Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21120046-8    https://doi.org/10.11896/cldb.21120046
  无机非金属及其复合材料 |
稻壳灰改性沥青混合料性能研究及路面结构动力响应分析
殷鹏1, 潘宝峰1,*, 康泽华2, 王宝民1
1 大连理工大学建设工程学部,辽宁 大连 116023
2 保利房地产开发有限公司,辽宁 大连 116023
Study on Performance of Rice Husk Ash Modified Asphalt Mixture and Dynamic Response Analysis of Pavement Structure
YIN Peng1, PAN Baofeng1,*, KANG Zehua2, WANG Baomin1
1 Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, Liaoning, China
2 Poly Real Estate Development Co.,Ltd., Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 11109KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 农副产品与废弃物成为环境污染的主要原因,为了减少其对环境造成的破坏及避免资源的浪费,本研究在活性稻壳灰及稻壳灰改性沥青的制备工艺研究的基础上,开展稻壳灰改性沥青混合料服役性能的研究。为此,通过分形理论对矿料级配设计加以优化分析,在保证沥青混合料性能可靠性的同时,研究了级配对混合料体积参数的影响;采用路面性能试验对比分析改性前后沥青混合料路面性能的差异性,并结合移动荷载作用下的三维有限元模型对混合料的路面结构进行相应分析,探寻稻壳灰改性沥青混合料的服役机理。结果表明:分形理论可以较好地描述分形维数值与混合料体积参数之间的关联性,所建立的预估方程模型可以较好地对混合料的体积参数进行预测;稻壳灰改性后,混合料的高温性能及水稳定性得到改善,虽然其低温性能有所衰减,但仍满足使用要求;有限元模型表明改性稻壳灰对基质沥青混合料的服役性能具有显著的改善效果,可以用来较好地量化分析沥青混合料服役时的各向异性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷鹏
潘宝峰
康泽华
王宝民
关键词:  稻壳灰  沥青混合料  分形理论  路用性能  有限元    
Abstract: Agricultural products and waste become the main cause of environmental pollution. To reduce the damage to the environment and avoid the waste of resources, this study was conducted to investigate the service performance of rice husk ash modified asphalt mixtures based on the preparation process of active rice husk ash and rice husk ash modified asphalt. For this, the orthogonal test was used to develop the rice husk ash modified asphalt with excellent performance, and the effect of the preparation process on the physical properties of the modified asphalt was investigated. The fractal theory was used to optimize the gradation design of mineral materials, and the influence of gradation on the volume parameters of asphalt mixture was studied while the reliability of performance ratio was ensured. Pavement performance test was used to analyze the difference of pavement performance of asphalt mixture before and after modification, and the pavement structure of asphalt mixture was analyzed with three-dimensional finite element model under moving load, so as to explore the service mechanism of rice husk ash modified asphalt mixture. The results showed that the fractal theory can better describe the correlation between the fractal dimensional values and the volume parameters of the mixture, and the prediction equation model was established to well predict the volume parameters of the mixture. The high-temperature performance and water stability of the mixture were improved after the modification of rice husk ash, although its low-temperature performance was attenuated, it still met the requirements. The finite element model showed that the modification of rice husk ash greatly improved the service performance of the matrix asphalt mixture, which can be used to better quantify the anisotropy of the asphalt mixture in service.
Key words:  rice husk ash    asphalt mixture    fractal theory    pavement performance    finite element
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  U414  
基金资助: 国家自然科学基金(ZX20200856)
通讯作者:  *潘宝峰,大连理工大学建设工程学部教授、博士研究生导师,1990年毕业于大连理工大学公路与城市道路专业,1998、2010年分别获得大连理工大学结构工程硕士、博士学位。曾任交通运输学院党支部书记兼副院长,主要从事道路新材料的研发与应用,近年来主持或参与国家自然科学基金等各类科研项目40余项;获省部级科技进步奖2项、市级科技进步奖1项;发表学术论文近50篇,出版学术专著9部,授权发明专利3项。panbf@dlut.edu.cn   
作者简介:  殷鹏,2021年毕业于重庆交通大学,获得工程硕士学位。现为大连理工大学建设工程学部博士研究生,在潘宝峰教授的指导下进行研究,主要从事道路建筑材料和结构方面的研究。
引用本文:    
殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
YIN Peng, PAN Baofeng, KANG Zehua, WANG Baomin. Study on Performance of Rice Husk Ash Modified Asphalt Mixture and Dynamic Response Analysis of Pavement Structure. Materials Reports, 2023, 37(14): 21120046-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21120046  或          https://www.mater-rep.com/CN/Y2023/V37/I14/21120046
1 Sengoz B, Topal A. Construction and Building Materials, 2005, 19(5), 337.
2 Lesueur D. Advances in Colloid and Interface Science, 2009, 145(1-2), 42.
3 Rusbintardjo G, Hainin M R, Yusoff N I M. Construction and Building Materials, 2013, 49, 702.
4 Ziari H, Babagoli R, Akbari A. Road Materials and Pavement Design, 2014, 16(1), 101.
5 Arabani M, Tahami S A, Taghipoor M. Road Materials and Pavement Design, 2017, 18(3), 713.
6 Arabani M, Babamohammadi S, Azarhoosh A R. International Journal of Pavement Engineering, 2015, 16(6), 502.
7 Gómez-Meijide B, Pérez I, Airey G, et al. Construction and Building Materials, 2015, 77, 168.
8 Arabani M, Tahami S A, Hamedi G H. Road Materials and Pavement Design, 2018, 19(5), 1241.
9 Huang B, Shu X, Vukosavljevic D. Journal of Material and Civil Engineering, 2010, 23(11), 1535.
10 Beagle E C. Rice husk conversion to energy, Food and Agriculture Organization of the United Nations, Italy, 1978, pp. 155.
11 Liang Shiqing, Sun Bocheng. Concrete, 2009(2), 73 (in Chinese).
梁世庆, 孙波成. 混凝土, 2009(2), 73.
12 Bhattacharya S C, Salam P A, Pham H L, et al. Biomass and Bioenergy, 2003, 25(5), 471.
13 Foroutan M S A, Khabiri M M, Kavussi A, et al. Construction and Building Materials, 2016, 125, 408.
14 Sinsiri T, Kroehong W, Jaturapitakkul C, et al. Materials and Design, 2012, 42, 424.
15 Xue Y, Wu S, Cai J, et al. Construction and Building Materials, 2014, 56, 7.
16 Arabani M, Tahami S A. Construction and Building Materials, 2017, 149, 350.
17 Han Z, Sha A, Tong Z, et al. Construction and Building Materials, 2017, 147. 776.
18 Ouyang Dong. China Building Materials, 2003(6), 42 (in Chinese).
欧阳东. 中国建材, 2003(6), 42.
19 Wei Haibin, Ma Zipeng, Liu Hantao, et al. Journal of Jilin University (Engineering and Technology Edition), DOI:10. 13229/j. cnki. jdxbgxb20210640 (in Chinese).
魏海斌, 马子鹏, 刘汉涛, 等. 吉林大学学报(工学版), DOI:10. 13229/j. cnki. jdxbgxb20210640
20 Liu Fuqiang, Zheng Mulian, Wang Shuai, et al. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(6), 1090 (in Chinese).
刘富强, 郑木莲, 王帅, 等. 沈阳建筑大学学报(自然科学版), 2021, 37(6), 1090.
21 Li Yule, Wu Guoxiong, He Zhaoyi, et al. Highway, 2021, 66(11), 1 (in Chinese).
李余乐, 吴国雄, 何兆益, 等. 公路, 2021, 66(11), 1.
22 Huang Wanqing, Cao Mingming, You Hong. Journal of Highway and Transportation Research and Development, 2020, 37(4), 1 (in Chinese).
黄晚清, 曹明明, 游宏. 公路交通科技, 2020, 37(4), 1.
23 Chen Shangjiang, Zhang Xiaoning. Journal of Building Materials, 2013, 16(3), 451 (in Chinese).
陈尚江, 张肖宁. 建筑材料学报, 2013, 16(3), 451.
24 Su Xiuli, Li Bo, Liu Jianxun, et al. Journal of Chang’an University(Natural Science Edition), 2011, 31(2), 12 (in Chinese).
宿秀丽, 李波, 刘建勋, 等. 长安大学学报(自然科学版), 2011, 31(2), 12.
25 Wang Lijiu, Liu Hui. China Journal of Highway and Transport, 2008(5), 6 (in Chinese).
王立久, 刘慧. 中国公路学报, 2008(5), 6.
26 Wang Lijiu, Liu Hui. Highway, 2008(1), 170 (in Chinese).
王立久, 刘慧. 公路, 2008(1), 170.
27 Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011), China Communication Press Co., Ltd., China, 2011 (in Chinese).
公路工程沥青及沥青混合料试验规程 (JTG E20-2011), 人民交通出版社, 2011.
28 Hou Yun, Dong Yuanshuai, Li Zhihao, et al. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(8), 120 (in Chinese).
侯芸, 董元帅, 李志豪, 等. 重庆交通大学学报(自然科学版), 2021, 40(8), 120.
29 Xia Quanping, Gao Jiangping, Zhang Qigong, et al. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3), 541 (in Chinese).
夏全平, 高江平, 张其功, 等. 吉林大学学报(工学版), 2022, 52(3), 541.
30 Fu Zhen, Shi Ke, Song Ruimeng, et al. New Chemical Materials, 2020, 48(12), 236 (in Chinese).
傅珍, 史柯, 宋瑞萌, 等. 化工新型材料, 2020, 48(12), 236.
31 Huang Weirong, Wang Jiao, Yang Yuzhu, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(11), 3847 (in Chinese).
黄维蓉, 王娇, 杨玉柱, 等. 硅酸盐通报, 2021, 40(11), 3847.
32 Cao Liping, Zhang Xiaokang, Yang Chen, et al. Journal of Central South University(Science and Technology), 2021, 52(7), 2276 (in Chinese).
曹丽萍, 张晓亢, 杨晨, 等. 中南大学学报(自然科学版), 2021, 52(7), 2276.
[1] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[2] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[3] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[4] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[5] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[6] 王伟, 庞少雄, 丁士杰, 杨昊天, 于呈呈. 向心关节轴承包围式单边挤压成形工艺数值模拟与实验验证[J]. 材料导报, 2025, 39(4): 23100250-7.
[7] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[8] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[9] 陈龙, 梁新星, 梁保青, 王云杰, 伍媛婷, 刘长青. 梯度氧化锆/氧化铝陶瓷高温应力的结构依赖性及优化设计[J]. 材料导报, 2025, 39(12): 24010215-7.
[10] 李莉佳, 刘振晖, 尹晓静, 严文强, 郝兆朋. 轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究进展[J]. 材料导报, 2025, 39(12): 23100024-11.
[11] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[12] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[13] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[14] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[15] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed