Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020082-6    https://doi.org/10.11896/cldb.24020082
  金属与金属基复合材料 |
1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析
张昌青1,2, 马东东2, 谷怀壮2, 王栋2, 刘恩荣2, 张鹏省3,*
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 西北有色金属研究院,西安 710016
Numerical Analysis of Micro Stir Friction Welding of 1060-H24 Pure Aluminum Without Shoulder-less Stirring Tool
ZHANG Changqing1,2, MA Dongdong2, GU Huaizhuang2, WANG Dong2, LIU Enrong2, ZHANG Pengsheng3,*
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Northwest Nonferrous Metals Research Institute, Xi’an 710016, China
下载:  全 文 ( PDF ) ( 17106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用ABAQUS有限元软件建立了顺序热力耦合数值模型,对常规与无轴肩两种搅拌工具下的微型搅拌摩擦焊焊接过程的温度场、应力及接头残余变形分布进行对比分析,并采用实验热电偶测温对热源模型的边界条件进行了校核。结果表明:两种搅拌工具下的焊接接头经历不同的加热和冷却焊接热循环,实测常规工具焊接接头的峰值温度约为362 ℃,而无轴肩工具焊接接头的峰值温度仅为143 ℃;焊件表面的残余应力均以焊缝中心对称分布,常规工具残余应力主要分布在轴肩区域,最大残余应力为116 MPa。无轴肩工具残余应力呈现以搅拌针为中心的尖峰分布,最大残余应力为34 MPa;残余应力反映了焊后变形,常规工具焊接的薄板沿焊缝方向向上凸起,最大挠度为2.817 mm。无轴肩工具焊接的薄板没有可视变形,最大挠度仅0.008 1 mm。无轴肩微型搅拌摩擦焊热输入低,能有效减小薄壁焊件的残余变形,提高焊件的尺寸精度和装配质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌青
马东东
谷怀壮
王栋
刘恩荣
张鹏省
关键词:  微型搅拌摩擦焊  有限元模拟  温度场  应力应变  残余变形    
Abstract: A sequential thermodynamic coupling numerical model was established using ABAQUS finite element software to comparatively analyze the temperature field, stress and joint residual deformation distribution of the miniature friction stir welding process under two stirring tools, shoulder and shoulderless, and the boundary conditions of the heat source model were calibrated using experimental thermocouple temperature measurement. The results show that:the welded joints under the two stirring tools experience different temperatures of the welding thermal cycle, the measured peak temperature of the shoulder tool welded joints is about 362 ℃, while the peak temperature of the welded joints of shoulderless tool is only 143 ℃; the residual stress on the surface of the welded parts is symmetrically distributed in the center of the weld seam, and the shoulder tool residual stress is distributed in the platform of the shoulder region, and the maximum residual stress is 116 MPa. The residual stress on the shoulderless tool is distributed in a spike centered on the stirring needle, with a maximum residual stress of 34 MPa. The residual stress reflects the post-weld deformation, with the thin plate welded by the shoulder tool bulging upwards in the direction of the weld, with a maximum deflection of 2.817 mm. The thin plate welded by the shoulderless tool has no visible deformation, and the maximum deflection is only 0.008 1 mm. Therefore, the low heat input of the shoulderless miniature friction stir welding can effectively reduce the residual deformation of the thin-walled weldment, and improve the dimensional accuracy and assembly quality of the weldment.
Key words:  micro friction stir welding    finite element modelling    temperature field    stress-strain    residual deformation
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(52261013)
通讯作者:  *张鹏省,西北有色金属研究院教授级高级工程师,西北工业大学、西安建筑科技大学、内蒙古工业大学专硕企业导师。从事钛合金材料领域的研究,主要集中在钛合金的显微组织、力学性能以及热处理对钛合金性能的理论与应用技术研究。zhangpengsheng2015@163.com   
作者简介:  张昌青,兰州理工大学研究员,硕士研究生导师。从事先进材料的摩擦焊、钎焊及阻焊等方向的固相连接基础理论与应用技术研究。
引用本文:    
张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
ZHANG Changqing, MA Dongdong, GU Huaizhuang, WANG Dong, LIU Enrong, ZHANG Pengsheng. Numerical Analysis of Micro Stir Friction Welding of 1060-H24 Pure Aluminum Without Shoulder-less Stirring Tool. Materials Reports, 2025, 39(5): 24020082-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020082  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020082
1 Verma M, Ahmed S, Saha P. Journal of Manufacturing Processes, 2021, 68, 249.
2 Ahmed S, Saha P. International Journal of Advanced Manufacturing Technology, 2020, 106, 3045.
3 Ni Y, Fu L, Shen Z, et al. Journal of Manufacturing Processes, 2019, 48, 145.
4 Zhang C Q, Wang W J, Jin X, et al. Metals, 2019, 9, 507.
5 Schmidt H, Hattel J, Wert J. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 143.
6 Huang Y X, Meng X C, Zhang Y B, et al. Journal of Materials Processing Technology, 2017, 250, 313.
7 Sattari S, Bisadi H, Sajed M. International Journal of Mechanics and Applications, 2012, 2, 1.
8 Fehrenbacher A, Schmale J R, Zinn M R, et al. Journal of Manufacturing Science and Engineering, 2014, 136(2), 021009.
9 Verma S, Misra J P. Materials Today:Proceedings, 2017, 4, 1350.
10 Zhu Z, Wang M, Zhang H J, et al. Journal of Plasticity Engineering, 2017, 24(2), 217(in Chinese).
朱智, 王敏, 张会杰, 等. 塑性工程学报, 2017, 24(2), 217.
11 Huang G. Simulation study of liquid-cooled heat sink inlet FSW temperature and residual state. Master’s Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese).
黄敢. 液冷散热板入水口FSW温度及残余状态仿真研究. 硕士学位论文, 昆明理工大学, 2021.
12 Xing S L, Tang T X, Han B, et al. Science and Technology Innovation and Application, 2023, 13(21), 14 (in Chinese).
邢松龄, 唐天祥, 韩博, 等. 科技创新与应用, 2023, 13(21), 14.
13 Ma J L, Zeng Z Q, Sun Y B, et al. Welding Technology, 2021, 50(12), 27 (in Chinese).
马佳良, 曾泽群, 孙屹博, 等. 焊接技术, 2021, 50(12), 27.
14 Wang Y. Study on the effect of structural design on the thermal coupling of aluminum/steel continuous drive friction welding head. Master’s Thesis, Lanzhou University of Science and Technology, China, 2023(in Chinese).
王烨. 结构设计对铝/钢连续驱动摩擦焊接头热力耦合影响的研究. 硕士学位论文, 兰州理工大学, 2023.
15 Wang N L, Zeng Z Q, Sun Y B, et al. Modern Machinery, 2023(4), 33 (in Chinese).
王聂龙, 曾泽群, 孙屹博, 等. 现代机械, 2023(4), 33.
16 Yan D Y. Study and simulation of thermal-mechanical process of stir friction welding of aluminum alloy thin-walled structures. Ph. D. Thesis, Tsinghua University, China, 2010(in Chinese).
鄢东洋. 铝合金薄壁结构搅拌摩擦焊热—力学过程的研究及模拟. 博士学位论文, 清华大学, 2010.
17 Yan D Y, Shi Q Y Wu A P, et al. Journal of Metals, 2009, 45(2), 183 (in Chinese).
鄢东洋, 史清宇, 吴爱萍, 等. 金属学报, 2009, 45(2), 183.
[1] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[2] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[3] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[4] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[5] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[6] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[7] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[8] 杨海华, 杨武, 刘汉龙, 马俊玲, 王景. 基于PPR数据建模技术的砂砾石料应力应变规律拟合[J]. 材料导报, 2023, 37(13): 21020115-6.
[9] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[10] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[11] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[12] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[13] 杨一, 庞玉华, 孙琦, 董少若, 刘东. 考虑实际边界条件的辊式淬火过程温度场数值模拟[J]. 材料导报, 2022, 36(15): 21050259-7.
[14] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[15] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed