Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22090192-6    https://doi.org/10.11896/cldb.22090192
  无机非金属及其复合材料 |
碱激发胶凝材料硬化体内Na+分布规律模拟
卞立波1,2,*, 陶志1,2, 赵阳光1,2, 巴合卓力·克孜尔开勒迪1,2, 赵乙平1,2
1 北京建筑大学土木与交通工程学院,北京 100044
2 北京节能减排与城乡可持续发展省部共建协同创新中心,北京 100044
Simulation of Na+ Distribution Law of Alkali-activated Cementitious Materials Hardened Paste
BIAN Libo1,2,*, TAO Zhi1,2, ZHAO Yangguang1,2, BA Hezhuoli·Kezierkailedi1,2, ZHAO Yiping1,2
1 School of Civil and Traffic Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Collaborative Innovation Center for Energy Conservation and Emission Reduction and Sustainable Urban-Rural Development, Beijing 100044, China
下载:  全 文 ( PDF ) ( 6694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过试验探究了标准养护条件下的碱激发胶凝材料硬化体内Na+在一维方向上的分布规律。同时,基于 Fick扩散方程,采用COMSOL Multiphysics有限元模拟软件,通过有限元条件下硬化体内的Na+扩散系数、湿度水头和孔隙率等边界条件的设定,建立了碱激发胶凝材料硬化体有限元模型,模拟了碱激发胶凝材料硬化体一维方向上Na+的分布规律。试验结果表明,在标准养护条件下,0~3 d碱激发胶凝材料硬化体内Na+的迁移量呈“∨”型分布,Na+以两端析出为主,3~28 d碱激发胶凝材料硬化体内的Na+迁移量呈“∧”型分布,Na+以内部迁移为主。基于Fick扩散定律的COMSOL Multiphysics仿真模拟,在扩散系数DF,C=1×10-8 m2/s、湿度水头φ=0.85、孔隙率∈p=20%的条件下建立溶质传递方程与溶剂运输方程,拟合得到的碱激发胶凝材料硬化体内Na+一维分布规律与试验结果相近。本工作实现了基于试验的碱激发胶凝材料硬化体内Na+一维分布的数学模拟。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卞立波
陶志
赵阳光
巴合卓力·克孜尔开勒迪
赵乙平
关键词:  碱激发胶凝材料  硬化体  离子迁移量  一维分布  有限元模拟    
Abstract: The Na+ distribution regularity of alkali-activated cementitious materials(AACMs) hardened paste under standard curing rules was discussed in this work. At the same time, the Na+diffusion coefficient parameters, the humidity parameters and porosity were got based on the Fick diffusion equation. The finite element hardened paste model was established and the Na+distribution law of AACMs hardened paste was simulated with the finite element software of COMSOL Multiphysicys. The experiment results showed that the Na+ migration quantity presented ‘∨'distribution in 3 d and the Na+ came out from both ends. The Na+ migration quantity presented ‘∧'distribution from 3 d to 28 d and the Na+ just moved inside the hardened paste. The finite element model based on the diffusion coefficient DF, C=1×10-8 m2/s, the humidity parameters φ=0.85 and the porosity ∈p=20% owned the similar rules to the test results. The mathematical model better simulated the one-dimensional Na+ distribution of AACMs hardened paste on the experiment.
Key words:  alkali-activated cementitious materials(AACMs)    hardened paste    ions migration amount    one dimensional distribution    finite element simulation
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU521.4  
基金资助: 国家自然科学基金(51578039);北京市自然科学基金(8174063)
通讯作者:  *卞立波,北京建筑大学土木与交通工程学院副教授、硕士研究生导师,2006年中国农业大学土木工程专业本科毕业,2009年北京建筑工程学院结构工程专业硕士研究生毕业,2016年北京科技大学土木工程专业博士研究生毕业。目前主要从事新型胶凝材料、功能性建筑材料等方面的教学和研究工作。承担科技部重点研发计划子课题、北京市自然科学基金等多项项目,发表相关论文40余篇,包括Materials、Journal of Building Engineering、Journal of Wuhan University of Technology(Materials)等。bianlibo1984@163.com   
引用本文:    
卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
BIAN Libo, TAO Zhi, ZHAO Yangguang, BA Hezhuoli·Kezierkailedi, ZHAO Yiping. Simulation of Na+ Distribution Law of Alkali-activated Cementitious Materials Hardened Paste. Materials Reports, 2024, 38(3): 22090192-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090192  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22090192
1 Lv W, Sun Z, Su Z. Cement and Concrete Composites, 2019, 106, 103.
2 Nguyen Q H, Lorente S, Duhart-Barone A, et al. Construction and Building Materials, 2018, 191, 853.
3 Kang S P, Kwon S J. Construction and Building Materials, 2017, 133, 459.
4 Pratt P L, Wang S D, Pu X C, et al. Advances in Cement Research, 2015, 7(27), 93.
5 Sun J. Study on efflorescence of slag-based geopolymer activated by so-dium/potassium silicate solution. Ph. D. Thesis, Guangxi University, China, 2019(in Chinese).
孙佳. 钠/钾水玻璃激发矿渣基地聚物的泛碱研究. 博士学位论文, 广西大学, 2019.
6 Gao Z R, Xu Y F, Li S E, et al. Journal of Hohai University(Natural Sciences), 2016, 44(5), 433(in Chinese).
高子瑞, 徐永福, 李淑娥, 等. 河海大学学报(自然科学版), 2016, 44(5), 433.
7 Hohannesson B F. Cement and Concrete Research, 1999, 8, 1261 .
8 Hohannesson B F. Advanced Cement Based Materials, 1997, 6, 71.
9 Wu Yanqing. Dynamics of fluid flow and contaminant transport in porous media, Shanghai Jiao Tong University Press, China, 2007(in Chinese).
仵彦卿. 多孔介质污染物迁移动力学, 上海交通大学出版社, 2007.
10 Marc Mainguy, Claire Tognazzi. Cement and Concrete Research, 2000, 30, 83.
[1] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[2] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[3] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[4] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[5] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[6] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[7] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[8] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[9] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[10] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[11] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[12] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[13] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[14] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[15] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed