Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22090131-7    https://doi.org/10.11896/cldb.22090131
  金属与金属基复合材料 |
Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律
张宏吉1,2, 彭文飞1,2,*, 李贺1,2, 邵熠羽1,2, Moliar Oleksandr1,2
1 宁波大学机械工程与力学学院,浙江 宁波 315211
2 宁波大学浙江省零件轧制成形技术研究重点实验室,浙江 宁波 315211
Finite Element Simulation of Asymmetrical Rolling for Cu-20%Fe Powder and Influence Law of Process Parameters
ZHANG Hongji1,2, PENG Wenfei1,2,*, LI He1,2, SHAO Yiyu1,2, Moliar Oleksandr1,2
1 College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
2 Zhejiang Provincial Key Laboratory of Part Rolling Technology, Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 16988KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高铁含量铜铁粉末异步轧制的成形规律及合理选取工艺参数,应用Shima-Oyane屈服准则,在MSC.Marc有限元软件中建立粉末轧制有限元模型,通过实验验证了该模型的有效性。利用仿真结合轧制实验方法分析了异速比、压下率、轧制速度、轧辊直径及辊面摩擦系数等工艺参数对生坯相对密度和轧制力的影响规律。结果表明:相较于粉末对称轧制,采用异步的方式能显著减小轧制力,提高生坯密度分布均匀性;过大的压下率和轧辊直径分别会对生坯造成边裂和缠辊等不良影响,过低的压下率和摩擦系数导致生坯不能顺利轧制成形。实验结果与有限元模拟结果相符,相对密度模拟结果最大误差为3.89%,轧制力模拟结果最大误差为9.49%,研究结果对铜铁粉末异步轧制成形工艺优化有较好的借鉴价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宏吉
彭文飞
李贺
邵熠羽
Moliar Oleksandr
关键词:  铜铁粉末  异步轧制  有限元模拟  相对密度  轧制力    
Abstract: To investigate the forming law of asymmetrical rolling of copper-iron powder with high iron content, and select reasonable process parameters, the MSC. Marc finite element software was used to create the copper and iron powder rolling finite element model based on the Shima-Oyane yield criterion. The finite element model was verified by experiments. The influence of process parameters such as differential speed ratio, reduction ratio, rolling speed, roller diameter and friction coefficient on the relative density and rolling force of green sheet were analyzed by simulation and rolling experiment. The results show that asymmetric rolling can significantly reduce the rolling force and improve the uniformity of green sheets density distribution compared with powder symmetric rolling. When the reduction ratio and roll diameter are too large, the green sheets suffer edge cracking and roll wrapping relatively, and too low reduction ratio and friction coefficient result in unsmooth forming of the green sheets. The test results agree well with the finite element simulation results. The maximum error of the relative density simulation results is 3.89%, and the maximum error of the rolling force simulation results is 9.49%. The research results have a good reference value for the optimization of asymmetrical rolling forming process of copper-iron powder.
Key words:  copper-iron powder    asymmetrical rolling    finite element simulation    relative density    rolling force
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(52075272;52205386);宁波市科技计划(2019B10100;2021Z099); 省属高校基本科研战略引导项目(SJLZ2021002)
通讯作者:  *彭文飞,宁波大学机械工程与力学学院副教授、博士研究生导师。2011年毕业于北京科技大学机械工程系,获得工学博士学位。目前主要从事运载工具(汽车、高铁、航空航天)构件轻量化成形制造、金属基/碳纤维增强树脂基复合材料成形成性一体化调控等研究,主持国家级项目2项,在国内外专业期刊上发表论文60余篇,参与编著专著2部,获授权发明专利10余项。pengwenfei@nbu.edu.cn   
作者简介:  张宏吉,硕士研究生,现就读于宁波大学机械工程与力学学院机械专业,主要从事高铁含量铜铁粉末轧制成形及烧结工艺研究。
引用本文:    
张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
ZHANG Hongji, PENG Wenfei, LI He, SHAO Yiyu, Moliar Oleksandr. Finite Element Simulation of Asymmetrical Rolling for Cu-20%Fe Powder and Influence Law of Process Parameters. Materials Reports, 2024, 38(3): 22090131-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090131  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22090131
1 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 41(in Chinese).
李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 41.
2 Zhou B, Guo C L, Sun J P, et al. Electrical Engineering Materials, 2021(4), 19(in Chinese).
周斌, 郭创立, 孙君鹏, 等. 电工材料, 2021(4), 19.
3 Zhu R T, Zhang X N, Chen D S, et al. Ordnance Material Science and Engineering, 2019, 42(6), 5(in Chinese).
朱睿童, 张湘妮, 陈德山, 等. 兵器材料科学与工程, 2019, 42(6), 5.
4 Mao M C, Gan X P, Zhou K C, et al. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4), 363(in Chinese).
毛敏聪, 甘雪萍, 周科朝, 等. 粉末冶金材料科学与工程, 2021, 26(4), 363.
5 Wang M, Yang Q R, Jiang Y B, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 3039.
6 Zhang C Z, Chen C G, Huang L N, et al. Powder Metallurgy, 2021, 64(4), 308.
7 Huang Y, Li Y C, Lei B, et al. Journal of Functiional Materials, 2022, 53(10), 10071(in Chinese).
黄颖, 李育川, 雷波, 等. 功能材料, 2022, 53(10), 10071.
8 Hirohata T, Masaki S, Shima S. Journal of Materials Processing Techno-logy, 2001, 111(1), 113.
9 Masaki S, Hirohata T, Haga T. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2008, 40(3), 518.
10 Kalutskii G Y, Gogaev K A, Voropaev V S, et al. Powder Metallurgy and Metal Ceramics, 2007, 46(3-4), 197.
11 Gogaev K A, Kalutskii G Y, Voropaev V S. Powder Metallurgy and Metal Ceramics, 2009, 48(3-4), 152.
12 Wang Y R, Fu X X, Chao G H, et al. In: Collection of China Copper Processing Industry Annual Conference 2021 and China Copper Industry High Quality Development Conference. Sanmenxia, China, 2021, pp.379(in Chinese).
王永如, 傅新欣, 巢国辉, 等. 2021年中国铜加工产业年度大会暨中国铜产业高质量发展大会. 三门峡, 2021, pp.379.
13 Liu M J, Liu G C. Advanced Materials Research, 2012, 569, 111.
14 Prikhod'ko I Y, Dedik M A, Gogaev K A, et al. Powder Metallurgy and Metal Ceramics, 2016, 55(1-2), 12.
15 Shima S, Oyane M. International Journal of Mechanical Sciences, 1976, 18(6), 285.
16 Zhao W B. Mechanical modeling and numerical simulation of metal powder warm pressing. Ph.D. Thesis, South China University of Technology, China, 2005(in Chinese).
赵伟斌. 金属粉末温压成形的力学建模和数值模拟. 博士学位论文, 华南理工大学, 2005.
17 Wang W C, Qi H, Liu P A, et al. Metals, 2018, 8(7), 537.
18 Kuhn H A, Downey C L. International Journal of Powder Metallurgy, 1971, 7(1), 15.
19 Tu T S, Lin D W. Journal of Netshape Forming Engineering, 2001, 19(2), 4(in Chinese).
屠挺生, 林大为. 精密成形工程, 2001, 19(2), 4.
20 Dube R K. International Material Reviews, 1990, 35(3), 253.
[1] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[2] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[3] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[4] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[5] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[6] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[7] 李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
[8] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[9] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[10] 黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
[11] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[12] 张聪惠, 薛少博, 肖桂枝, 颜学柏, 舒滢. 微米级稀有金属箔材研究现状[J]. 材料导报, 2020, 34(13): 13139-13145.
[13] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[14] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[15] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed