Finite Element Simulation of Asymmetrical Rolling for Cu-20%Fe Powder and Influence Law of Process Parameters
ZHANG Hongji1,2, PENG Wenfei1,2,*, LI He1,2, SHAO Yiyu1,2, Moliar Oleksandr1,2
1 College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China 2 Zhejiang Provincial Key Laboratory of Part Rolling Technology, Ningbo University, Ningbo 315211, Zhejiang, China
Abstract: To investigate the forming law of asymmetrical rolling of copper-iron powder with high iron content, and select reasonable process parameters, the MSC. Marc finite element software was used to create the copper and iron powder rolling finite element model based on the Shima-Oyane yield criterion. The finite element model was verified by experiments. The influence of process parameters such as differential speed ratio, reduction ratio, rolling speed, roller diameter and friction coefficient on the relative density and rolling force of green sheet were analyzed by simulation and rolling experiment. The results show that asymmetric rolling can significantly reduce the rolling force and improve the uniformity of green sheets density distribution compared with powder symmetric rolling. When the reduction ratio and roll diameter are too large, the green sheets suffer edge cracking and roll wrapping relatively, and too low reduction ratio and friction coefficient result in unsmooth forming of the green sheets. The test results agree well with the finite element simulation results. The maximum error of the relative density simulation results is 3.89%, and the maximum error of the rolling force simulation results is 9.49%. The research results have a good reference value for the optimization of asymmetrical rolling forming process of copper-iron powder.
张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
ZHANG Hongji, PENG Wenfei, LI He, SHAO Yiyu, Moliar Oleksandr. Finite Element Simulation of Asymmetrical Rolling for Cu-20%Fe Powder and Influence Law of Process Parameters. Materials Reports, 2024, 38(3): 22090131-7.
1 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 41(in Chinese). 李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 41. 2 Zhou B, Guo C L, Sun J P, et al. Electrical Engineering Materials, 2021(4), 19(in Chinese). 周斌, 郭创立, 孙君鹏, 等. 电工材料, 2021(4), 19. 3 Zhu R T, Zhang X N, Chen D S, et al. Ordnance Material Science and Engineering, 2019, 42(6), 5(in Chinese). 朱睿童, 张湘妮, 陈德山, 等. 兵器材料科学与工程, 2019, 42(6), 5. 4 Mao M C, Gan X P, Zhou K C, et al. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4), 363(in Chinese). 毛敏聪, 甘雪萍, 周科朝, 等. 粉末冶金材料科学与工程, 2021, 26(4), 363. 5 Wang M, Yang Q R, Jiang Y B, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 3039. 6 Zhang C Z, Chen C G, Huang L N, et al. Powder Metallurgy, 2021, 64(4), 308. 7 Huang Y, Li Y C, Lei B, et al. Journal of Functiional Materials, 2022, 53(10), 10071(in Chinese). 黄颖, 李育川, 雷波, 等. 功能材料, 2022, 53(10), 10071. 8 Hirohata T, Masaki S, Shima S. Journal of Materials Processing Techno-logy, 2001, 111(1), 113. 9 Masaki S, Hirohata T, Haga T. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2008, 40(3), 518. 10 Kalutskii G Y, Gogaev K A, Voropaev V S, et al. Powder Metallurgy and Metal Ceramics, 2007, 46(3-4), 197. 11 Gogaev K A, Kalutskii G Y, Voropaev V S. Powder Metallurgy and Metal Ceramics, 2009, 48(3-4), 152. 12 Wang Y R, Fu X X, Chao G H, et al. In: Collection of China Copper Processing Industry Annual Conference 2021 and China Copper Industry High Quality Development Conference. Sanmenxia, China, 2021, pp.379(in Chinese). 王永如, 傅新欣, 巢国辉, 等. 2021年中国铜加工产业年度大会暨中国铜产业高质量发展大会. 三门峡, 2021, pp.379. 13 Liu M J, Liu G C. Advanced Materials Research, 2012, 569, 111. 14 Prikhod'ko I Y, Dedik M A, Gogaev K A, et al. Powder Metallurgy and Metal Ceramics, 2016, 55(1-2), 12. 15 Shima S, Oyane M. International Journal of Mechanical Sciences, 1976, 18(6), 285. 16 Zhao W B. Mechanical modeling and numerical simulation of metal powder warm pressing. Ph.D. Thesis, South China University of Technology, China, 2005(in Chinese). 赵伟斌. 金属粉末温压成形的力学建模和数值模拟. 博士学位论文, 华南理工大学, 2005. 17 Wang W C, Qi H, Liu P A, et al. Metals, 2018, 8(7), 537. 18 Kuhn H A, Downey C L. International Journal of Powder Metallurgy, 1971, 7(1), 15. 19 Tu T S, Lin D W. Journal of Netshape Forming Engineering, 2001, 19(2), 4(in Chinese). 屠挺生, 林大为. 精密成形工程, 2001, 19(2), 4. 20 Dube R K. International Material Reviews, 1990, 35(3), 253.