Research Progress on Springback Behavior of Bending and Forming of Aluminum Alloy for Vehicles
LUO Guangrui1,2, WU Zibin1,2,*, HIROMI Nagaumi1,2,*, WENG Wenping1,2, WANG Dongtao1,2, LI Yifeng1,2, MAO Zhifu1,2, DONG Xin1,3, FENG Zhixin1,3, CHEN Xi1,3, ZHANG Haitao1,3, ZHU Huiying1,2, ZHANG Bo4
1 High-Performance Metal Structure Materials Research Institute, Soochow University, Soochow 215021, Jiangsu, China 2 Shagang School of Iron and Steel, Soochow University, Soochow 215021, Jiangsu, China 3 The Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education(EPM), Northeastern University, Shenyang 110006, China 4 Shandong Weiqiao Aluminum & Electric Co., Ltd., Binzhou 256600, Shandong,China
Abstract: The Made in China 2025 listed lightweighting as the core and common technology for the development of many key industries. Improving the automobiles lightweighting can effectively save fuel consumption, reduce emissions and reduce pollution to the environment, which is an inevitable trend for the development of the automobile industry. Aluminum alloys are considered to be the material of choice for automotive lightweighting due to its own advantages of light weight, easy processing and molding, energy saving, environmental protection and high recycling rate. In practice, aluminum alloy materials usually need to be bent into a certain shapes in order to match the assembly of the overall structure. However, the springback phenomenon during bending is a serious problem which is difficult to regulate and control. This paper firstly starts from the forming method, geometric, material and process parameters, and combines experimental investigation with finite element simulation, discusses the influence law of these factors on the bending deformation springback of aluminum alloy, reveals the influence mechanism of these factors on the springback of aluminum alloy bending deformation, and provides the theoretical basis for the high precision control of the bending deformation rebound of aluminum alloy. In addition, the prediction and control methods have been reviewed in this paper, which is expected to provide new ideas for high precision springback control during aluminum alloys bending deformation.
通讯作者:
*吴子彬,通信作者,工学博士,苏州大学高性能金属结构材料研究院讲师。主要从事新型高强韧、高服役铝合金材料以及新型铝合金阳极材料设计、研发以及加工成型技术开发。在科研工作中先后以第一或通信作者在Electrochimica Acta、Journal of Power Sources、Journal of Alloys and Compounds、Journal of Materials Science等国际著名SCI期刊上发表9篇学术论文,合作发表SCI论文10篇,已授权国家发明专利3项,参与国家联合基金重点项目1项,校企合作项目3项。博士后进入“国家重大人才工程A类”长期创新人才、国家特聘专家长海博文教授团队,在面向国家和地方绿色循环经济建设的迫切需求下,开展高强韧、高服役、低成本新型铝合金材料设计、新型制备加工技术开发方面的研究工作。 长海博文(张海),通信作者,工学博士,现任苏州大学特聘教授,博士研究生导师。“国家重大人才工程A类”长期创新人才入选,国家特聘专家。东北大学兼职教授,东北大学引智基地特聘外国专家。北京科技大学兼职教授,湖南大学兼职教授,大连理工大学兼职教授,太原科技大学兼职教授。原中国铝业公司首席工程师,苏州有色金属研究院有限公司副总经理、教授。国际铝合金大会(ICAA)国际专家委员会委员、国际材料大会(THERMAC) 国际专家委员会委员、国家汽车轻量化创新联盟专家委委员、中国有色金属加工工业协会轻金属分会副理事长、中国机械工程学会铸造分会理事、中国汽车工程学会材料分会委员。主要从事高强高韧轻合金材料制备技术及成形基础理论研究,新型高强高韧铝合金材料开发及其在航空、交通运输中的应用研究,3C电子通讯行业功能材料研发及应用、先进结构材料制备及加工及汽车轻量化先进结构材料及零部件开发。迄今为止,已先后主持和承担了国家自然科学基金重点项目、国家重点计划“新能源”汽车专项、江苏省重大科技支撑项目等多项国家级和省部级科研项目。目前,已在Acta Materialia、Materialia Science and Eegineering A、Materials and Design等一流期刊发表论文100余篇,申请专利50余项,其中授权31项。zbwu@suda.edu.cn;zhanghai888jp@suda.edu.cn
1 Khan A M, Osińska M. Energies, 2022, 15(21), 7839. 2 Liu Y, Guo J B. Enviromental Science and Management, 2008, 33(12), 152 (in Chinese). 刘扬, 郭建斌. 环境科学与管理, 2008, 33(12), 152. 3 Chen Y, Cynthia C Y, Wang Y S. Research in Transportation Economics, 2020, 84, 100849. 4 Wang Z W, Zhang N. Journal of Iron and Steel Research International, 2011, 18, 747. 5 Park J H, Kim S K, Choi B I, et al. Materialwissenschaft and Werkstofftechnik, 2010, 41, 391. 6 Wen Z, Jxab C. Materials & Design, 2022, 221, 110994. 7 Vijayakumar M D, Dhinakaran V, Sathish T, et al. Materials Today:Proceedings, 2021, 37, 1790. 8 Ding N, Gao F, Wang Z H, et al. Journal of Industrial Ecology, 2016, 20, 818. 9 Li J Q, Yang G, Chen J Y, et al. Yunnan Metallurgy, 2020, 49(5), 68 (in Chinese). 李家奇, 杨钢, 陈俊宇, 等. 云南冶金, 2020, 49(5), 68. 10 Li S, Bai J N, Wang X C, et al. Advances in Mechanical Engineering, 2020, 12, 1. 11 Sachindra J D, Gohil A V, Mehta N D, et al. Materials Today:Proceedings, 2018, 5, 6370. 12 Huang R L. Internal Combustion Engine & Parts, 2021, 12(16), 167 (in Chinese). 黄瑞丽. 内燃机与配件, 2021, 12(16), 167. 13 Shim D S, Baek G Y, Shin G Y, et al. International Journal of Precision Engineering and Manufacturing, 2016, 17, 433. 14 Yao Y. Numercial analysis for typical multi-point bending process of aluminum alloy profile. Master’s Thesis, Jilin University, China, 2013 (in Chinese). 姚远. 铝合金型材多点弯曲成形中典型工艺的数值模拟研究. 硕士学位论文, 吉林大学, 2013. 15 Nikhare C P. International Journal of Precision Engineering and Manufacturing, 2020, 21, 67. 16 Almeida C O L, Lima L, Pereira M. Materials Research Express, 2020, 7(1), 016598. 17 Chang Y, Wang N, Wang B T, et al. Journal of Manufacturing Processes, 2021, 67, 345. 18 Zhang W P, Hu Z L, Li H H, et al. Rare Metal Materials and Engineering, 2019, 048(7), 2130. 19 Hoffmann E, Meya R, Tekkaya A E. Metals-Open Access Metallurgy Journal, 2021, 11(7), 1146. 20 Matej V, Isabel D, Joachim Baumeister, et al. Composite Structures, 2020, 234, 111748. 21 Zhang J F. Research of dieless bending of pipe, Master’s Thesis. Yanshan University, China, 2015(in Chinese). 张劲夫. 管材无模弯曲技术的研究. 硕士学位论文, 燕山大学, 2015. 22 Lu K, Zou T, Luo J, et al. The International Journal of Advanced Manufacturing Technology, 2022, 120, 781. 23 Pang J L, Xiao F, Chen G, et al. Hot Working Technology, 2021, 50(21), 83(in Chinese). 庞晋龙, 肖峰, 陈刚, 等. 热加工工艺, 2021, 50(21), 83. 24 Xie W, Jiang W, Wu Y. et al. The International Journal of Advanced Manufacturing Technology, 2022, 118, 3833. 25 Gao Y N, Li Y B, Cao D X, et al. Mate Rials Science and Technoloy, 2021, 29(4), 81(in Chinese). 高亚南, 李彦波, 曹大兴, 等. 材料科学与工艺, 2021, 29(4), 81. 26 Gavrilescu I, Boazu D, Stan F. Materials, 2021, 14(5), 1204. 27 Gou Y J. Reseatch on theory and forming limit of tube bending without mandrel. Ph.D. Thesis, Taiyuan University of Science and Technology, China, 2019(in Chinese). 苟毓俊. 管材无芯弯曲理论及成形极限研究. 博士学位论文, 太原科技大学, 2019. 28 Xu X M. Numerical simulation study on springback of 0Cr21Ni6Mn9N stainless steel tube NC bending. Master’s Thesis. Nanchang Hangkong University, China, 2014 (in Chinese). 许小妹. 0Cr21Ni6Mn9N不锈钢管数控弯曲回弹的数值模拟研究. 硕士学位论文, 南昌航空大学, 2014. 29 Zhang R Y, Zhao G Y, Guo Z H, et al. The International Journal of Advanced Manufacturing Technology, 2015, 80, 1067. 30 Li Y, Shi Z, Lin J, et al. International Journal of Machine Tools & Manufacture, 2018, 132, 113. 31 Zhang Z A, Yang Y F, Li L, et al. International Journal of Mechanical Sciences, 2019, 164, 105184. 32 Abvabi A, Rolfe B, Hodgson P D, et al. International Journal of Mechanical Sciences, 2015, 101, 124. 33 Zhang W P, Hu Z L, Li H H, et al. Rare Metal Materials and Engineering, 2019, 48, 2130. 34 brahim Karaaağaç. Arabian Journal for Science and Engineering, 2017, 42, 1853. 35 Ma Z C. Experiment and simulation on bending springback of automobile lightweight aluminum alloy AA6010. Master’s Thesis, North University of China, China, 2016 (in Chinese). 马子超. 汽车轻量化铝合金AA6010弯曲回弹实验模拟研究. 硕士学位论文, 中北大学, 2016. 36 Zhou W. Study on springback law of V-bend of 5182 aluminum alloy. Master’s Thesis, Central South University, China, 2012 (in Chinese). 周威. 5182铝合金V型弯曲回弹规律研究. 硕士学位论文, 中南大学, 2012. 37 Feng Y, Lan F C, Ruan F. Machinery Design and Manufacture, 2014(12), 262(in Chinese). 冯杨, 兰凤崇, 阮锋. 机械设计与制造, 2014(12), 262. 38 Gardiner F J. Transactions of the ASM, 1957, 79, 1. 39 E D X, Wang X F. Forging & Stamping Technology, 2006(5), 68(in Chinese). 鄂大辛, 王险峰. 锻压技术, 2006(5), 68. 40 E D X, Ning R X, Gu T. Acta Armamentarii, 2009, 30(10), 1353(in Chinese). 鄂大辛, 宁汝新, 古涛. 兵工学报, 2009, 30(10), 1353. 41 E D X, Liu Y F. Materials and Design, 2010, 31, 1256. 42 Zhang L L. Forging & Stamping Technology, 2002(3), 37(in Chinese). 张立玲. 锻压技术, 2002(3), 37. 43 Jia M H, Tang C T. Journal of Beijing Institute of Technology, 2012, 32(9), 910(in Chinese). 贾美慧, 唐承统. 北京理工大学学报, 2012, 32(9), 910. 44 Al-Qureshi H A, Russo A. Materials & Design, 2002, 23(2), 217. 45 Al-Qureshi H A. International Journal of Machine Tools & Manufacture, 1999, 39(1), 87. 46 Wang G, Zhu G X, Kou L Y, et al. Materials Research Express, 2020, 7, 016512. 47 Polat A, Avsar M, Ozturk F. Materiali in Technologies, 2015, 49, 487. 48 Ma J, Welo T, Wan D. Journal of Manufacturing Processes, 2021, 67, 503. 49 Li F T, Ge W W, Zhang Z C, at al. China Metalforming Equipment & Manufacturing Technology, 2012, 47(2), 76(in Chinese). 李福涛, 葛位维, 张召春, 等. 锻压装备与制造技术, 2012, 47(2), 76. 50 Zhang Z A, Yang Y F, Li L, et al. International Journal of Mechanical Sciences, 2019, 164, 105184. 51 Tao H, Li C, Song D J, at al. Journal of Plasticity Engineering, 2020, 27(6), 46(in Chinese). 陶欢, 李冲, 宋德军, 等. 塑性工程学报, 2020, 27(6), 46. 52 Karafillis A P, Boyce M C. International Journal of Machine Tools and Manufacture, 1996, 36(4), 503. 53 Li W J. Research on numerical simulation and springback control of stamping for body cover. Master’s Thesis, Shenyang University of Technology, China, 2020(in Chinese). 李文杰. 车身覆盖件冲压成型数值模拟及回弹控制研究. 硕士学位论文, 沈阳工业大学, 2020. 54 Wagoner R H, Gan W, Mao K, et al. In:The sixth ESAFORM Conference on Material Forming. Salerno, Italy, 2013,pp.7. 55 Gan W, Wagoner R H. International Journal of Mechanical Sciences, 2004, 46(7), 1097. 56 Lingbeek R, Huetink J, Ohnimus S, et al. Journal of Materials Processing Technology, 2005, 169(1), 115. 57 Cafuta G, Mole N, tok B. Materials & Design, 2012, 40, 476. 58 Cheng H, Cao J, Xia Z. International Journal of Mechanical Sciences, 2007, 49(3), 267. 59 Zhang Z K. Investigation to the springback prediction and springback control strategies in spatial tube forming. Ph.D. Thesis, Northwestern Polytechnical University, China, 2019(in Chinese). 张增坤. 空间管件塑性成形回弹的预测及控制策略研究. 博士学位论文, 西北工业大学, 2019. 60 Guo J, Li W, Wan M, et al. Optics & Laser Technology, 2021, 143(11), 107313. 61 Ma J, Welo T. International Journal of Machine Tools and Manufacture, 2021, 160, 103653. 62 Gao S, He T, Li Q, et al. Journal of Engineering Manufacture, 2022, 236(4), 440. 63 Li Y, Li R, Liang C, et al. Mathematical Problems in Engineering, 2020, 2020, 1. 64 Ren D, Zhao D, Fan R, et al. The International Journal of Advanced Manufacturing Technology, 2017, 92, 1291. 65 Li Y, Li A, Yue Z, et al. International Journal of Advanced Manufacturing Technology, 2020, 109, 1789.