Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22020135-6    https://doi.org/10.11896/cldb.22020135
  金属与金属基复合材料 |
基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究
汪愿1,2,*, 孙运刚1,2, 符彬1, 刘文浩1,2, 宣善勇1,2, 刘鹏1
1 国营芜湖机械厂,安徽 芜湖 241007
2 安徽省航空复合材料维修工程技术研究中心,安徽 芜湖 241007
Research on Rapid Repair of Aircraft Aluminum Alloy Cracks with Carbon Fiber Composites Based on VARI Process
WANG Yuan1,2,*, SUN Yungang1,2, FU Bin1, LIU Wenhao1,2, XUAN Shanyong1,2, LIU Peng1
1 State-operated Machinery Factory of Wuhu, Wuhu 241007, Anhui, China
2 Anhui Aeronautical Composite Maintenance Engineering Technology Research Center, Wuhu 241007, Anhui, China
下载:  全 文 ( PDF ) ( 8399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 考虑到飞机战伤抢修需求,在现有的复合材料胶接修理基础上提出了一种基于真空辅助树脂灌注(VARI)工艺的金属裂纹快速修理方法,通过静力拉伸和疲劳实验将VARI修理工艺与传统湿法胶接修理工艺、机械补强修理工艺进行对比,获得了不同修理工艺下实验件的静强度恢复率、疲劳寿命、修理时间及比静拉伸强度恢复率,借助有限元分析法深入研究了VARI修理件的损伤过程,并以比静拉伸强度恢复率为指标,利用Design Expert软件进一步优化了修理补片参数。结果表明:在三种修理工艺中,VARI修理工艺效果最佳,采用VARI修理的实验件静强度能恢复至完好实验件的90.3%,疲劳寿命相比未修理实验件增长了31.4倍;与传统湿法胶接修理相比,采用VARI修理可将修理时间缩短60.2%;与机械补强修理相比,采用VARI修理可将实验件增重降低53.5%,比静拉伸强度恢复率提高146.6%;对于长度为20 mm的裂纹,补片长度60 mm、宽度64.8 mm、铺层数目四层(即补片厚度1 mm)为最优补片参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪愿
孙运刚
符彬
刘文浩
宣善勇
刘鹏
关键词:  飞机铝合金裂纹  真空辅助树脂灌注修理  疲劳寿命  比静拉伸强度恢复率  有限元模拟    
Abstract: Considering the needs of aircraft battle damage repair, based on the bonded composite repairs, a metal crackrapid repair method based on vacuum assisted resin infusion (VARI) process was studied. The VARI repair process was compared with the traditional wet bonded repair process and mechanical reinforcement repair process through static tension and fatigue experiments, the static strength recovery rate, fatigue life, repair time and specific static strength recovery rate of the specimens under different repair processes were obtained. The damage process of the VARI repair specimen was deeply studied with the help of finite element analysis method. Taking the specific static tensile strength recovery rate as the index, the repair patch parameters were further optimized by using Design Expert software. The results show that among the three repair processes, the quality of VARI repair process is the best. The static strength of the specimen repaired by VARI can be restored to 90.3% of the intact specimen, and the fatigue life is 31.4 times longer than that of the non repaired specimen; compared with the traditional wet bonding repair, the repair time can be shortened by 60.2% by using VARI repair; compared with mechanical strengthening repair, VARI repair can reduce the increase of specimen weight by 53.5% and increase the specific static strength recovery rate by 146.6%; for the crack with a length of 20 mm, the patch length of 60 mm, the width of 64.8 mm and the number of patch layers of 4 (the patch thickness of 1 mm) are the optimal patch parameters.
Key words:  aircraft aluminum alloy cracks    vacuum assisted resin infusion repair    fatigue life    specific static tensile strength recovery rate    finite element simulation
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TB332  
基金资助: 安徽省科技重大专项(202203a05020039)
通讯作者:  *汪愿,2020年4月毕业于南京航空航天大学,获得材料工程专业硕士学位,发表一篇SCI论文。现任职于国营芜湖机械厂,主要研究方向为航空装备复合材料修理设计。   
引用本文:    
汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
WANG Yuan, SUN Yungang, FU Bin, LIU Wenhao, XUAN Shanyong, LIU Peng. Research on Rapid Repair of Aircraft Aluminum Alloy Cracks with Carbon Fiber Composites Based on VARI Process. Materials Reports, 2024, 38(6): 22020135-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020135  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22020135
1 Hu F Y, Hu X L. National Defense Science &Technology, 2008, 29(3), 61 (in Chinese).
胡芳友, 胡絮良. 国防科技, 2008, 29(3), 61.
2 Liu Q, Djugum R, Sun S, et al. In:17th Australian Aerospace congress. Melbourne, 2017, pp. 363.
3 Wang A D, Chen Y L, Bian G X, et al. Aeronautical Manufacturing Technology, 2017(20), 91 (in Chinese).
王安东, 陈跃良, 卞贵学, 等. 航空制造技术, 2017(20), 91.
4 Daryabor P, Safizadeh M S. Infrared Physics & Technology, 2016(79), 58.
5 Xu S, Wei D, Chen H. Equipment Manufacture Technology, 2017(11), 28 (in Chinese).
许松, 魏东, 陈浩. 装备制造技术, 2017(11), 28.
6 Wen S W, Xiao J Y, Wang Y R. Composites: Part B, 2013, 44, 266.
7 Jones R A. Composite Structures, 2009, 87, 151.
8 Fard A, Ghasemi R, Mohammadi B. Russian Journal of Nondestructive Testing, 2020, 56(6), 540.
9 Zou T C, Fu J, Ju L Z, et al. Materials Reports, 2023, 37(11), 163(in Chinese).
邹田春, 符记, 巨乐章, 等. 材料导报, 2023, 37 (11), 163.
10 Zou T C, Li L H, Ju L Z, et al. Materials Reports, 2022, 36(19),155(in Chinese).
邹田春, 李龙辉, 巨乐章, 等. 材料导报, 2022, 36(19), 155.
11 Baker A A. Composites Structures, 1984, 2(2), 153.
12 Albedah A, Khan S M A, Benyahia F, et al. Engineering Fracture Mechanics, 2015, 145, 210.
13 Mhamdia R, Serier B, Albedah A, et al. Journal of Composite Materials, 2017, 51(17), 2131.
14 Caliskan U, Ekici R, Bayazit A Y, et al. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials Design and Application, 2021, 235(5), 146.
15 Hao J B, Li X D, Mu Z T. Acta Materiae Compositae Sinica, 2016, 33(3), 643(in Chinese).
郝建滨, 李旭东, 穆志韬. 复合材料学报, 2016, 33(3), 643.
16 Nie H C, Xu J F, Guan Z D, et al. Journal of Materials Engineering, 2017, 45(10), 124 (in Chinese).
聂恒昌, 徐吉峰, 关志东, 等. 材料工程, 2017, 45(10), 124.
[1] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[2] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[3] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[4] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[5] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[6] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[7] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[8] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[9] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[10] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[11] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[12] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[13] 许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
[14] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[15] 张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed