Microstress and Microstrain Simulation of DH36 Steel Weld Based on Microstructure
WANG Bingying1,*, LI Lisha1, QIN Zhi1, HUANG Peng1, ZOU Yukun1, WEN Zhigang2, GONG Baoming3
1 School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, China 2 Offshore Petroleum Engineering (Qingdao) Co., Ltd., Qingdao 266520, Shandong, China 3 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Abstract: The influences of microstructure distribution and morphology in typical areas on the mechanical properties of the multi-layer multi-pass welds are researched in this paper, with the base material chosen DH36, steel for offshore platform structures. Experimental tests utilizing instrumented indentation systems and corresponding numerical simulations are employed to investigate different fracture properties (including crack ini-tiation and material deformation behaviors) from different microstructure characteristics of the weld zone. The results show that stress and strain concentration conditions occur in the mixture of acicular ferrite (AF) and grain boundary ferrite (GBF) due to the inconsistent elastic-plastic deformation behavior, with the stress concentration existing in the AF and the strain concentration in the GBF extending to the AF. In addition, the stripe distribution of GBF leads to a better joint strength than the network distribution.
1 Jiang J B, Zhou J X, Chen C R, et al. China Welding, 2021, 30(2), 25. 2 Cheng F J, Liu Y, Gao W B, et al. Transactions of the China Welding Institution, 2017, 38(4), 111 (in Chinese). 程方杰, 刘阳, 高文斌, 等. 焊接学报, 2017, 38(4), 111. 3 Gao Y, Cui L, Chang Y Q, et al. Transactions of the China Welding Institution, 2019, 40(5), 60 (in Chinese). 高艳, 崔丽, 常耀卿, 等. 焊接学报, 2019, 40(5), 60. 4 Babu S S. Current Opinion Solid State Materials Science, 2004, 8, 267. 5 Zhang C Z, Gong B M, Deng C Y, et al. Materials Science & Enginee-ring A, 2017, 685, 310. 6 Liu K Y, Wang D P, Deng C Y, et al. Materials Science & Engineering A, 2020, 770, 138541. 7 Yang L J, Wang Y W, Sun T, et al. Journal of Materials Processing Technology, 2020, 275, 116363. 8 Rao D, Heerens J, Alves Pinheiro G, et al. Materials Science & Engineering A, 2010, 527, 5018. 9 Tan M X. Acta Metallurgica Sinica, 2005, 41(10), 1020 (in Chinese). 谭孟曦. 金属学报, 2005, 41(10), 1020. 10 Li Y L, Yang H, Liu G P, et al. Materials Science and Technology, 2020, 28(1), 39 (in Chinese). 李玉龙, 杨泓, 刘冠鹏, 等. 材料科学与工艺, 2020, 28(1), 39. 11 Zheng H, Li Y Q, Xu D K, et al. Journal of Plasticity Engineering, 2020, 27(12), 113 (in Chinese). 郑红, 李杨齐, 徐栋恺, 等. 塑性工程学报, 2020, 27(12), 113. 12 Mojumder S, Mahboob M, Motalab M. Materials Today Communications, 2020, 23, 100798. 13 Ji Z, Yang H, Li H W, et al. Materials & Design, 2015, 87, 171. 14 Dao M, Chollacoop N, Van Vliet K J, et al. Acta Materialia, 2001, 49, 3899. 15 Tao P, Gong J M, Wang Y F, et al. Results in Physics, 2018, 11, 377. 16 Pham T H, Nguyen N V. Construction and Building Materials, 2021, 268, 121211. 17 Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A, Computational Materials Science, 2012, 65, 197. 18 Ghassemi-Armaki H, Maaβ R, Bhat S P, et al. Acta Materialia, 2014, 62, 197.