Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19214-19222    https://doi.org/10.11896/cldb.20070116
  高分子与聚合物基复合材料 |
纳米压痕测试技术在GFRP材料中的应用综述
王耀城1, 刘定坤1, 刘伟1, 吕阳2, 郑愚3
1 深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,滨海城市韧性基础设施教育部重点实验室,深圳 518060
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
3 东莞理工学院生态环境与建筑工程学院,东莞 523830
A Review: Application of Nanoindentation Testing Technology in GFRP Materials
WANG Yaocheng1, LIU Dingkun1, LIU Wei1, LYU Yang2, ZHENG Yu3
1 Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 508160, China
2 State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology),Wuhan 430070,China
3 School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523830,China
下载:  全 文 ( PDF ) ( 5364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来玻璃纤维树酯复合材料(GFRP)广泛应用于各类工程领域,它在服役环境中的性能劣化过程相对复杂,需要联系其宏微观特征变化进行深入研究。利用纳米压痕技术测试GFRP中各组分的微观力学性能有助于建立材料微观与宏观尺度之间性能的相互联系,为深入探讨GFRP的性能演化提供依据。然而,在利用纳米压痕对GFRP进行检测过程中,由于约束效应、树酯堆积效应和粘弹性效应等作用的影响,会导致测量值与真实结果之间产生偏差。本文从纳米压痕技术的基本原理入手,对其在测试GFRP内玻璃纤维、树酯基体和界面三类区域时的既有研究进行归纳总结,逐一分析导致测量误差的原因并提出了相应的解决方案或研究方向。在引起测量误差的各类原因中,树酯堆积效应和粘弹性效应将导致树酯部分的测量结果偏高,但对纤维的测量结果几乎不会产生影响。纤维约束效应对GFRP各区域纳米压痕结果的准确性均有明显影响,且通过理论分析可知纳米压痕测试中约束效应对测试结果的影响普遍存在于所有复合材料之中。为探析此效应对测试结果的影响,已有学者展开了实验和模拟研究,但既有研究对数据结果的分析较为浅显,尚未形成完整体系。鉴于约束效应对测量结果的影响,本文还对GFRP中纤维和树酯的界面状态进行了初步的理论分析。最后,为更加准确地表征GFRP的微观性能,笔者还在后续所需要深入探讨的研究方向中提出了相关建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王耀城
刘定坤
刘伟
吕阳
郑愚
关键词:  玻璃纤维树酯复合材料  纳米压痕  微观力学性能  约束效应    
Abstract: Glass fiber reinforced polymer (GFRP) has been widely used in various engineering fields, and its performance degradation under multiple types of service condition is relatively complex, which needs to be further explored from its macro and micro characteristic performances. Nanoindentation is a meaningful technique for getting micromechanical properties of GFRP components so as to establish their relationships with the overall mechanical performances of the GFRP in macroscale and provides a basis for further study on changes in GFRP during service. In actual detection process, due to the influences of constraint effect, pile-up effect and viscoelastic effect, testing errors between the as-measured and the real values cannot be completely avoided and may lead to misunderstanding of the obtained results. In this paper, principle of the nanoindentation technology is firstly introduced, based on which existing researches in testing regions of the GFRP, viz. glass fiber, resin matrix and their interphase, are reviewed. Also, reasons of measurement errors are discussed and their corresponding solutions or research directions are raised. Among the reasons of the caused errors, the pile-up and the viscoelastic effects of resin would lead to higher as-measured results, but merely influent the fiber results. The fiber constraint effect has a more obvious influence on results of all the regions in GFRP. Theoretical analyses prove that this constraint effect should exist in all types of composite materials, including GFRP. To minimize influence of the constraint effect, scholars have carried out both experimental and simulation studies, however, the current analyses are still superficial without any systematic outcome. Due to the influences of the constraint effect on as-measured results, initial theoretical analysis on properties of the interface between fiber and resin matrix is also carried out. Meanwhile, to facilitate an accurate analysis on micro-properties of GFRP, further relevant study directions regarding this application are also proposed.
Key words:  glass fiber reinforced polymer    nanoindentation    micromechanical properties    constraint effect
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51520105012;51678368);广东省基础与应用基础研究基金项目(2019A1515012014);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2019-13)
通讯作者:  yang.lv@whut.edu.cn   
作者简介:  王耀城,博士,深圳大学土木与交通工程学院副教授,硕士研究生导师。2014年毕业于英国 Queen's University Belfast 土木工程专业。主要从事土木工程材料耐久性、水泥基材料化学、无损检测技术的研究和教学工作。主持国家级、省市级纵向科研项目共5项,同时参与多项与研究领域相关的其他课题,以第一及通讯作者身份发表国内外高水平期刊论文十余篇。
吕阳,博士,武汉理工大学硅酸盐建筑材料国家重点实验室博士后。2017年毕业于比利时Ghent University土木工程专业。主要从事固体废弃物资源化利用及高性能水泥基材料等领域的研究工作。主持承担国家级与省部级科研项目4项,骨干参与国家自然科学基金、国家重点研发计划等科研项目多项,以第一及通讯作者身份发表SCI收录论文 10 余篇。
引用本文:    
王耀城, 刘定坤, 刘伟, 吕阳, 郑愚. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.
WANG Yaocheng, LIU Dingkun, LIU Wei, LYU Yang, ZHENG Yu. A Review: Application of Nanoindentation Testing Technology in GFRP Materials. Materials Reports, 2021, 35(19): 19214-19222.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070116  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19214
1 Kim J K, Sham M L, Wu J S. Composite Part A-Applied Science and Manufacturing, 2001, 32(5), 607.
2 Vaughan T J, McCarthy C T. Composite Part A-Applied Science and Manu-facturing, 2011, 42(9), 1217.
3 Alachek I, Reboul N, Jurkiewiez B. International Journal of Adhesion and Adhesives, 2020, 98, 13.
4 Zhang B, Yang Z, Sun X, Tang Z. Computational Materials Science, 2010, 49(3), 645.
5 Hodzic A, Stachurski Z H, Kim J K. Polymer, 2000, 41(18), 6895.
6 Gooranorimi O, Suaris W, Dauer E. Composite Part B-Engineering, 2017, 110, 388.
7 El-Hassan H, El Maaddawy T. Advances in Materials Science and Engineering, 2019, 3, 1.
8 Benmokrane B, Ali A H, Mohamed H M. Composite Part B-Enginee-ring, 2017, 114, 163.
9 Wiater A, Siwowski T. Composite Structure 2020, 239, 13.
10 Hardiman M, Vaughan T J, McCarthy T. Composite Structure, 2017, 180, 782.
11 Arasu P M, Karthikayan A, Venkatachalam R. Polimery, 2019, 64(7-8), 504.
12 Zhou X L, Fu J, Li Y W, Li F X. Journal of Applied Polymer Science, 2014, 131(2), 10.
13 Frohlich F, Grau P, Grellmann W. Physica Status Solidi a-Applied Research, 1977, 42(1), 79.
14 Berkovich E. Zavod Lab, 1950, 13, 345.
15 Hardiman M, Vaughan T J, McCarthy C T. Polymer Testing, 2016, 52, 157.
16 Hardiman M. Nanoindentation characterisation of carbon fibre reinforced plastic microstructures. Ph.D. Thesis, University of Limerick, Ireland, 2016.
17 Oliver W C, Pharr G M. Journal of Materials Research, 1992, 7(6), 1564.
18 Pharr G M, Bolshakov A. Journal of Materials Research, 2002, 17(10), 2660.
19 Pharr G M, Oliver W C, Brotzen F R. Journal of Materials Research, 1992, 7(3), 613.
20 Hay J C, Bolshakov A, Pharr G M. Journal of Materials Research, 1999, 14(6), 2296.
21 Xu Z H, Li X. Acta Materialia, 2008, 56(6), 1399.
22 Hay J. Experimental Techniques, 2009, 33(6), 66.
23 Oliver W C, Pharr G M. Journal of Materials Research, 2004, 19(1), 3.
24 Nascimento E M, Lepienski C M. Journal of Non-Crystalline Solids, 2006, 352(32-35), 3556.
25 Mortell D J, Tanner D A, McCarthy C T. Composite Structure, 2016, 149, 33.
26 Hudspeth M, Nie X, Chen W. Polymer, 2012, 53(24), 5568.
27 Borodulin A S. Materials Science (Russia), 2012, 7, 34.
28 McAllister Q P, Gillespie J W, VanLandingham M R. Journal of Mate-rials Research, 2012, 27(14), 1824.
29 Li X D, Bhushan B, McGinnis P B. Materials Letters, 1996, 29(4-6), 215.
30 Lonnroth N, Muhlstein C L, Pantano C. Journal of Non-Crystalline Solids, 2008, 354(32), 3887.
31 Downing T D, Kumar R, Cross W M. Journal of Adhesion Science and Technology, 2000, 14(14), 1801.
32 Gregory J R, Spearing S M. Composites Science and Technology, 2005, 65(3-4), 595.
33 Hardiman M, Vaughan T J, McCarthy C T. Computational Materials Science, 2012, 64, 162.
34 Hu Z, Farahikia M, Delfanian F. Journal of Composite Materials, 2015, 49(27), 3359.
35 VanLandingham M R, Villarrubia J S, Guthrie W F, Meyers G F. Macromolecular Symposia, 2001, 167, 15.
36 Deuschle J. Mechanics of soft polymer indentation. Ph.D. Thesis, University of Stuttgart, Germany, 2008.
37 Lu H, Wang B, Ma J, et al. Mechanics of Time-Dependent Materials, 2003, 7(3-4), 189.
38 Tranchida D, Piccarolo S, Loos J. Macromolecules,2007,40(4),1259.
39 Giro-Paloma J, Roa J J, Diez-Pascual A M, et al. European Polymer Journal, 2013, 49(12), 4047.
40 Fischer-Cripps A C. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 385(1-2), 74.
41 Odegard G M, Gates T, Herring H M. Experimental Mechanics, 2005, 45(2), 130.
42 Frontini P, Lotfian S, Monclus M A. Experimental Mechanics, 2015, 55(5), 851.
43 Bolshakov A, Pharr G M. Journal of Materials Research, 1998, 13(4), 1049.
44 Zhou X, Jiang Z, Wang H. Materials Science and Engineering a-Structu-ral Materials Properties Microstructure and Processing, 2008, 488(1-2), 318.
45 Oyen M L. Acta Materialia, 2007, 55(11), 3633.
46 Briscoe B J, Fiori L, Pelillo E. Journal of Physics D-Applied Physics, 1998, 31(19), 2395.
47 Hochstetter G, Jimenez A, Loubet J L. Journal of Macromolecular Science-Physics, 1999, 38(5-6), 681.
48 Agilent. Indentation Rules of Thumb- Applications and Limits, Agilent Technologies, USA, 2009.
49 Rafiqul A T, Asce M, Hasan F. Journal of Nanomechanics and Micromechanicas, 2013, 3(2), 17.
50 Jin T, Niu X Y, Xiao G S, et al. Polymer Testing, 2015, 41, 1.
51 Beake B D, Leggett G J. Polymer, 2002, 43(2), 319.
52 Khanna S K, Ranganathan P, Yedla S B. Journal of Engineering Mate-rials and Technology-Transactions of the Asme, 2003, 125(2), 90.
53 Hodzic A, Kim J K, Lowe A E. Composites Science and Technology, 2004, 64(13-14), 2185.
54 Hodzic A, Kalyanasundaram S, Kim J K. Micron, 2001, 32(8), 765.
55 Khanna S K, Winter R M, Ranganathan P. Composite Part A-Applied Science and Manufacturing, 2003, 34(1), 53.
56 Bec S, Tonck A, Loubet J L. Philosophical Magazine, 2006, 86(33-35), 5347.
57 Knapp J A, Follstaedt D M, Myers S M. Journal of Applied Physics, 1999, 85(3), 1460.
58 Wang J S, Zheng X J, Zheng H. Computational Materials Science, 2010, 49(2), 378.
59 Zheng H, Zheng X J, Song S T, et al. Computational Materials Science, 2011, 50(10), 3026.
[1] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[2] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[3] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[4] 李越, 李玉龙, 李学文. Q235钢表面TIG焊堆焊铁基非晶涂层的组织与性能[J]. 材料导报, 2020, 34(18): 18135-18138.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[8] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[9] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[10] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[11] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed