Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3783-3788    https://doi.org/10.11896/cldb.18080057
  金属与金属基复合材料 |
PREP法制备球形CuAl10Fe3铜合金粉末的性能表征
黄柯1,2,赵阳2,,张昌松1,王晓明2,常青2,邱六2,关雪飞3
1 陕西科技大学机电工程学院,西安 710021
2 陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
3 烟台领示软件科技有限公司,烟台 264000
Properties Characterization of Spherical CuAl10Fe3 Copper Alloy Powders Prepared by Plasma Rotating Electrode Processing
HUANG Ke1,2, ZHAO Yang2, ZHANG Changsong1, WANG Xiaoming2, CHANG Qing2, QIU Liu2, GUAN Xuefei3
1 Department of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072
3 Yantai Lingshi Software Technology Co., Ltd., Yantai 264000
下载:  全 文 ( PDF ) ( 2297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子旋转电极雾化技术制备球形CuAl10Fe3铜合金粉末,利用激光粒度分析仪、O&N分析仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪和纳米压痕仪对CuAl10Fe3铜合金粉末的粒径分布、氧氮含量、微观形貌、组织物相及纳米硬度和弹性模量特性进行表征。结果表明,CuAl10Fe3粉末的体积平均粒径(D50)为74 μm,松装密度、振实密度和流动性分别为4.45 g/cm3、4.6 g/cm3、16.3 s/50 g;其平均氧、氮含量分别为0.024%和0.004%,其中氧含量随CuAl10Fe3粉末粒度的减小而增大,氮含量则基本保持一致。XRD分析表明,CuAl10Fe3粉末主要由α相、马氏体β′相和少量的富铁K相组成。大粒径粉末的表面形貌为快速凝固形成的花瓣状胞状树枝晶。随着粉末粒度的减小,表面形貌由胞状树枝晶向平面晶转变,截面形貌则由大块胞晶向细条状晶转变,且小粒径颗粒截面组织明显细化,纳米硬度和弹性模量也增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄柯
赵阳
张昌松
王晓明
常青
邱六
关雪飞
关键词:  球形铜合金粉末  等离子旋转电极雾化法  快速凝固  纳米压痕    
Abstract: CuAl10Fe3 spherical copper alloy powders were prepared directly from the master electrode by the plasma rotating electrode processing (PREP). Then, the Laser particle size analyzer, O-N apparatus, scanning electron microscope (SEM) X-ray diffractometer (XRD) and nano-indentation tester were employed to characterize the particle size distribution, content of oxygen and nitrogen, micromorphology, phase composition and nano-hardness and modulus of the CuAl10Fe3 powders. It could be found from the results that the CuAl10Fe3 powders held an average particle size (D50) of 74 μm, the loose density of 4.45 g/cm3, the tap density of 4.6 g/cm3, the flowability of 16.3 s/50 g. The mean content of oxygen and nitrogen were 0.024% and 0.004%, respectively. The decrease of CuAl10Fe3 particle size would give rise to the increase of oxygen concentration and exert no obvious effect on nitrogen content. XRD patterns of the obtained CuAl10Fe3 showed that the powders were primarily composed of α phase, martensite β′phase, and a small amount iron rich K phase. As for the micromorphology of the CuAl10Fe3, powders with large particle size exhibits isometric petal-shaped cellular dendrite resulted from rapid solidification. The decrease of particle size forced the surface morphology of cell dendrites transform into planar crystals, the morphology of the cross section elements vary from the cellular crystal to the fine stripe crystal. Moreover, CuAl10Fe3, powders with small particle size presented a greatly refined cross section structure, as well as improved nano-hardness and modulus.
Key words:  sphercial copper alloy powders    plasma rotating electrode process (PREP)    rapid solidification    nano-indentation
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG174.442  
基金资助: 国家重点研发计划(2018YFB1105800)
作者简介:  黄柯,1991年生,硕士研究生,研究方向为金属增材制造。
赵阳,1983年生,工学博士,助理研究员,研究方向为铜合金增材制造及表面强化。
引用本文:    
黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
HUANG Ke, ZHAO Yang, ZHANG Changsong, WANG Xiaoming, CHANG Qing, QIU Liu, GUAN Xuefei. Properties Characterization of Spherical CuAl10Fe3 Copper Alloy Powders Prepared by Plasma Rotating Electrode Processing. Materials Reports, 2019, 33(22): 3783-3788.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080057  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3783
[1] Xu J L, Wang Z P. Nonferrous Metals, 2004, 56(41),51(in Chinese).徐建林, 王智平. 有色金属工程, 2004, 56(41),51.
[2] Ullrich W J. International Journal of Powder Metallurgy, 2007, 43(5),43.
[3] Li Y Y, Xia W. Transactions of Nonferrous Metals Society of China, 1996(3),76(in Chinese).李元元, 夏伟.中国有色金属学报, 1996(3),76.
[4] Lv Y T, Wang L Q, Mao J W, et al. Rare Metal Materials and Enginee-ring,2016,45(3),815(in Chinese).吕玉廷, 王立强, 毛建伟,等. 稀有金属材料与工程, 2016, 45(3),815.
[5] Chen Z H, Sun X F, Li Z M, et al. Surface Technology, 2017(10),161(in Chinese).陈正涵, 孙晓峰, 李占明,等. 表面技术, 2017(10),161.
[6] Yang Q Z, Wei Y P, Gao P, et al. Materials Review, 2016,30(S1),107(in Chinese).杨全占,魏彦鹏,高鹏,等. 材料导报, 2016,30(专辑27),107.
[7] Zhang F, Gao Z J, Ma T, et al. Industrial Technology Innovation, 2017(4),63(in Chinese).张飞, 高正江, 马腾,等. 工业技术创新, 2017(4),63.
[8] Herzog D, Seyda V, Wycisk E, et al. Acta Materialia, 2016, 117,371.
[9] Chen G, Zhao S Y, Tan P, et al. Powder Technology, 2018,333,38.
[10] Slotwinski J A, Garboczi E J, Stutzman P E, et al. Journal of Research of the National Institute of Standards & Technology, 2014, 119, 460.
[11] Grella W A, Solis-Ramos E, Clark E, et al. Additive Manufacturing, 2017, 17,123.
[12] Tang H P, Wang J, Lu S L, et al. Materials China, 2015(3),49(in Chinese).汤慧萍, 王建, 逯圣路,等. 中国材料进展, 2015(3),49.
[13] Li S, Hassanin H, Attallah M M, et al. Acta Materialia, 2016, 105,75.
[14] Yang X, Xi Z P, Liu Y, et al. Rare Metal Materials and Engineering, 2010, 39(12),2251(in Chinese).杨鑫, 奚正平, 刘咏,等. 稀有金属材料与工程, 2010, 39(12),2251.
[15] Yue G M, Li Q, Dong X F, et al. Rare Metal Materials and Enginee-ring, 2017(4),298(in Chinese).乐国敏, 李强, 董鲜峰,等. 稀有金属材料与工程, 2017(4),298.
[16] Dai Y, Li L. Advanced Materials Industry, 2016(6),23(in Chinese).戴煜, 李礼. 新材料产业, 2016(6),23.
[17] Zhang Y, Li S K, Chen S D. Powder Metallurgy Industry, 1998(6),17(in Chinese).张莹, 李世魁, 陈生大. 粉末冶金工业, 1998(6), 17.
[18] Guo W M, Chen S D, Feng D, et al. Aviation Maintenance & Enginee-ring, 1999(5),44(in Chinese).国为民, 陈生大, 冯涤. 航空维修与工程, 1999(5),44.
[19] Hsu T I, Wei C M, Wu L D, et al. Scienctific Reports, 2016, 117,371.
[20] Kuang Q B, Zou L M, Cai Y X, et al. Journal of Materials Engineering, 2017, 45(10),39(in Chinese).邝泉波, 邹黎明, 蔡一湘,等. 材料工程, 2017, 45(10),39.
[21] Zhao S Y, Yin J G, Shen L, et al. Rare Metal Materials and Enginee-ring, 2017, 46(6),1679(in Chinese).赵少阳, 殷京瓯, 沈垒,等. 稀有金属材料与工程, 2017, 46(6),1679.
[22] Gerling R, Clemens H, Schimansky F P. Advanced Engineering Mate-rials,2004,6(1-2),23.
[23] Tourret D, Reinhart G, Gandin C A, et al. Acta Materialia, 2011, 59(17),6658.
[24] Chen Z H, Chen D. Fast solidified powder aluminum alloy, Metallurgical Industry Press, China, 2009 (in Chinese).陈振华,陈鼎. 快速凝固粉末铝合金, 冶金工业出版社, 2009.
[25] Lu J P, Li X H. Processing copper and copper alloy gold phase map, Central South University Press, China, 2010 (in Chinese).路俊攀, 李湘海. 加工铜及铜合金金相图谱,中南大学出版社,2010.
[26] Zhao J, Wang Y N, Wang Z, et al. Hot Working Technology, 2011, 40(1),10(in Chinese).赵军, 王亚楠, 王智,等. 热加工工艺, 2011, 40(1),10.
[27] Zhao S Y, Chen G, Tan P, et al. The Chinese Journal of Nonferrous Me-tals, 2016, 26(5), 980(in Chinese).赵少阳, 陈刚, 谈萍,等. 中国有色金属学报, 2016, 26(5),980.
[1] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[2] 周琦,任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[3] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[4] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[5] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[6] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed