Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3026-3030    https://doi.org/10.11896/cldb.18070240
  无机非金属及其复合材料 |
利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能
刘律宏1, 2, 刘燕萍1, 马晋遥2, 桑利军2, 程晓鹏2, 张跃飞2,
1 太原理工大学机械与运载工程学院,太原 030024
2 北京工业大学固体微结构与性能研究所,北京 100124
In-situ Nanoindentation Investigation of Mechanical Properties of Al2O3 Ultra-thin Nanofilm Grown by Atomic Layer Deposition
LIU Lyuhong1,2, LIU Yanping1, MA Jinyao2, SANG Lijun2, CHENG Xiaopeng2, ZHANG Yuefei2
1 School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024
2 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 2637KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过原子层沉积技术(ALD)在Si基片上制备厚度为20~60 nm的Al2O3薄膜,采用三维光学显微镜和透射电子显微镜分别分析了它们的表面粗糙度和微观形貌;采用自主研发的扫描电子显微镜/扫描探针显微镜(SEM/SPM)联合测试系统对样品薄膜进行了原位纳米压痕实验,基于Hertz弹性接触理论对其弹性模量进行分析,利用Hay模型消除基底对测量结果的影响,并对模型中由于压头形状不同产生的误差进行了修正,最终计算出薄膜的实际弹性模量值。实验结果表明:ALD制备的Al2O3薄膜为非晶态,表面粗糙度不随厚度的增大而增大。薄膜弹性模量值没有表现出明显的小尺寸效应,去基底效应后得到的弹性模量值为(175±10) GPa。同一压入比条件下,薄膜厚度越小基底效应越明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘律宏
刘燕萍
马晋遥
桑利军
程晓鹏
张跃飞
关键词:  原子层沉积  Al2O3薄膜  原位纳米压痕  力学性能  弹性模量    
Abstract: Five Al2O3 nanofilms with thickness of 20—60 nm were deposited by atomic layer deposition(ALD). The surface roughness and microstructure of the deposited Al2O3 nanofilms were characterized by three dimensional optical microscopy and transmission electron microscopy. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope(SEM/SPM)system were analyzed based on Hertz’s theory of contact mechanics for the elastic modulus of Al2O3 nanofilms. The Hay model was used to eliminate the influence of the substrate on the measurement results, and the errors in the model due to the different shapes of the indenter were corrected. The results show that, ALD Al2O3 nanofilms is amorphous, and the surface roughness does not increase with the increase of thickness. The elastic modulus do not show obvious small size effect, and the measured value is (175±10) GPa. Under the same indentation ratio, the smaller the film thickness is, the more obvious the substrate effect is.
Key words:  atomic layer deposition    Al2O3 film    in-situ nanoindentation    mechanical property    elastic modulus
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG113.25  
基金资助: 国家自然科学基金(21676005)
通讯作者:  yfzhang@bjut.edu.cn   
作者简介:  刘律宏,2016年9月进入太原理工大学机械工程学院,硕士在读。于2017年7月至今在北京工业大学固体微结构与性能研究所联合培养学习,主要从事纳米薄膜材料力学性能领域的研究。
张跃飞,北京工业大学研究员,博士研究生导师。2008年获北京工业大学理学博士学位。博士论文获2008年度北京工业大学优秀博士论文、2009年度北京市优秀博士论文、2010年度国家百篇优秀博士论文提名奖。2002.7—2008.9期间在北京印刷学院等离子体物理及材料研究室从事纳米材料制备、功能薄膜制备、等离子体技术应用等科研工作。2008年调入北京工业大学工作。2009年入选北京市中青年骨干教师,2010年入选北京市科技新星。其团队研究方向为材料原位电子显微学,新型纳米材料的制备及微结构性能关系。共承担国家及省部级项目20余项,在国内外学术期刊上以第一作者或通讯作者发表论文100余篇,其中1区期刊论文20余篇,他引近1 400次。
引用本文:    
刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
LIU Lyuhong, LIU Yanping, MA Jinyao, SANG Lijun, CHENG Xiaopeng, ZHANG Yuefei. In-situ Nanoindentation Investigation of Mechanical Properties of Al2O3 Ultra-thin Nanofilm Grown by Atomic Layer Deposition. Materials Reports, 2019, 33(18): 3026-3030.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070240  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3026
[1] Wang X,Tabakman S M,Dai H.American Chemical Society,2008,130,8152.
[2] Cheng R,Bai J,Liao L,et al.Proceedings of the National Academy of Sciences of the United States of America,2012,109,11588.
[3] Tripp M K,Stampfer C,Miller D C,et al.Sensors and Actuators A Physical,2006,130(2),419.
[4] Tapily K,Jakes J E,Stone D S,et al.Journal of the Electrochemical Society,2008,155(7),545.
[5] Wang C Y,Yang S M,Li C S,et al.Rare Metal Materials and Enginee-ring,2015,44(12),3078(in Chinese).王琛英,杨树明,李常胜,等.稀有金属材料与工程,2015,44(12),3078.
[6] Ma Y X,Gao Y F,Zeng Y Y,et al.Materias Review B:Research Papers,2015,29(3),102(in Chinese).马亚鑫,高怡斐,曾雨吟,等.材料导报:研究篇,2015,29(3),102.
[7] Huang H.Sevreral theoretical problems of indentation and scratch testing and experimental research based on self-made instruments.Ph.D. Thesis,Jilin University,China,2014(in Chinese).黄虎.压痕/划痕测试若干理论与基于自制仪器的试验研究.博士学位论文,吉林大学,2014.
[8] Yang P.Investigations on fracture toughness and residual stress of thermal barrier coatings in high temperature by in-situ indentation technique.Master’s thesis,Xiangtan University,China,2017(in Chinese).杨鹏.高温环境下热障涂层力学性能压痕原位表征分析.硕士学位论文,湘潭大学,2017.
[9] Li X F.Interfacial structures and electrical properties of atomiclayer deposited high-k dielectric thin films on Ⅲ-Ⅴand Ge semiconductor.Ph.D. Thesis,Nanjing University,China,2013(in Chinese).李学飞.原子层沉积栅介质材料与Ⅲ-Ⅴ族/Ge半导体的界面结构及其电学性能研究.博士学位论文,南京大学,2013.
[10] Hu H,Dong B H,Wang L,et al.Materias Review A: Review Papers,2016,30(12),9(in Chinese).胡航,董兵海,万丽,等.材料导报:综述篇,2016,30(12),9.
[11] Johnson K L. Contact mechanics,Cambridge University Press,UK,1985.
[12] Qasmi M,Delobelle P.Surface and Coatings Technology,2006,201,1191.
[13] Jee A Y,Lee M.Polymer Testing,2010,29(1),95.
[14] Sneddon I N.International Journal of Engineering Science,1965,3(1),47.
[15] Geng K,Yang F,Druffel T,et al.Polymer,2005,46(25),11768.
[16] Doerner M F,Nix W D.Journal of Materials Research,1986,1(4),601.
[17] King R B.International Journal of Solids and Structures,1987,23(12),1657.
[18] Gao H,Chiu C H,Lee J.International Journal of Solids and Structures,1992,29(29),2471.
[19] Shield T W,Bogy D B.Journal of Applied Mechanics,1989,56(4),798.
[20] Song H.Selected mechanical problems in load- and depth-sensing indentation testing.Ph.D. Thesis,Rice University,USA,1999.
[21] Xu H,Pharr G M.Scripta Materialia,2006,55(4),315.
[22] Li D G,Liang Y C,Bai Q S.Aviation Precision Manufacturing Technology,2008,44(2),9(in Chinese).李德刚,梁迎春,白清顺.航空精密制造技术,2008,44(2),9.
[23] Zheng X Y,Lee H,Weisgraber T H,et al.Science,2014,344(6190),1373.
[24] Hay J,Crawford B.Journal of Materials Research,2011,26(6),727.
[25] Saha R,Nix W D.Acta Materialia,2002,50(1),23.
[26] Mencˇík J,Munz D,Quandt E.Journal of Materials Research,1997,12(9),2475.
[1] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[2] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[3] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[4] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[5] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[6] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[7] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[8] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[9] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[10] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[11] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[12] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[13] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[14] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[15] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed