Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3080-3089    https://doi.org/10.11896/cldb.18110031
  无机非金属及其复合材料 |
原子层沉积微通道板的研究进展
郭俊江1,2,3,朱香平1,2,许彦涛1,2,曹伟伟1,2,3,邹永星1,陆敏1,彭波1,司金海3,郭海涛1,
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安交通大学电子与信息工程学院,西安710049
Research Progress of Atomic Layer Deposited Micro-channel Plate
GUO Junjiang1,2,3,ZHU Xiangping1,2,XU Yantao1,2,CAO Weiwei1,2,3,ZOU Yongxing1,LU Min1,PENG Bo1,SI Jinhai3,GUO Haitao1,
1 State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 School of Electronic and Information Engineering,Xi'an Jiao Tong University,Xi'an 710049,China
下载:  全 文 ( PDF ) ( 22163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微通道板(MCP)是光通讯和光电子技术领域实现电子倍增和信号放大的核心器件,其性能提升主要包括提高增益、延长寿命和降低暗计数。目前国内外普遍使用的商品化微通道板仍是基于传统铅硅酸盐玻璃经氢还原工艺制备的。尽管经过四代玻璃组分和制备工艺优化,MCP增益可达103,寿命为0.3 C/cm2,暗计数为0.25 events/(s·cm2),但由于玻璃组分和复杂制备工艺的限制,其离子反馈、背景噪声很难进一步降低,增益也无法大幅提升。鉴于此,近10年来科研人员提出并完善了新的解决方案——利用原子层沉积(ALD)技术,在硼硅酸盐玻璃基板孔内制备导电层和二次电子发射层等功能层,从而获得具有导电和电子倍增能力的微通道板。这种新型原子层沉积微通道板(ALD-MCP)有效避免了基板玻璃材料对其性能优化的制约,实现了基板材料和功能材料的独立设计,能够显著提高微通道板的综合性能。经过一系列尝试,国际上已开发出性能远优于传统MCP的ALD功能层:以Al2O3/ZnO、Al2O3/W或Al2O3/Mo为导电层,MgO或Al2O3为二次电子发射层的ALD-MCP增益已达104,暗计数降低至0.078 events/(s·cm2),寿命提升至7 C/cm2,但是其性能稳定性仍有待进一步提高。此外,还需要在提高沉积效率、优化调控功能层性能等方面进一步深入研究。本文从功能层的组成和微通道板的性能两方面归纳、梳理了利用原子层沉积技术制备微通道板的国内外研究情况,并总结了目前研究中存在的不足,展望了未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭俊江
朱香平
许彦涛
曹伟伟
邹永星
陆敏
彭波
司金海
郭海涛
关键词:  微通道板  原子层沉积  功能层  增益  寿命    
Abstract: The micro-channel plate (MCP) is the core device for electronic multiplication and signal amplification in the fields of optical communication and optoelectronic technology, and the performance improvement research of MCP is mainly focused on increasing gain, extending service life and reducing dark count. Currently, the commonly used commercial MCPs are still prepared based on the traditional lead silicate glass via hydrogen reduction process. Although its gain, lifetime and dark count can reach 103, 0.3 C/cm2, 0.25 events/(s·cm2), respectively, optimized by four generations of glass components and preparation process, the glass composition and complicated preparation process limit its further enhancement in performance, e.g. lower ion feedback and background noise, and higher gain.
In view of this,researchers have proposed and perfected a new solution over the past decade:adopting atomic layer deposition (ALD) techno-logy to deposit functional layers, including the conductive layers and secondary electron emission layers onto the surface of borosilicate glass substrates. Thereby, an MCP with conduction and electron multiplication capability is obtained. This novel ALD-MCP can effectively avoid the restriction of substrate glass on its performance optimization, realize the independent design of the substrate glass and the functional layer’s materials, and significantly improve the comprehensive performance of the MCP.
Through continuous attempts, the ALD functional layers exhibiting much superior performance to that of traditional MCP have been developed. The prevailing deposition materials for conductive layer are Al2O3/ZnO, Al2O3/W or Al2O3/Mo , and for the secondary electron emission layers are MgO or Al2O3, with the products' gain elevated to 104, dark count reduced to 0.078 events/(s·cm2), and lifetime prolonged to 7 C/cm2. However, its stability still requires further improvement. In addition, deeper investigations are needed to improve deposition efficiency, and to optimize and regulate the performance of functional layers.
This paper provides a systematic summary over the worldwide research status of ALD-MCP from the perspectives of functional layer composition and product performance. Moreover, it also gives a critical discussion involving the problems in current research and a prospective outlook for future development trends.
Key words:  micro-channel plate    atomic layer deposition    functional layer    gain    life
                    发布日期:  2020-01-03
ZTFLH:  O484.1  
基金资助: 国家重点研发计划(2016YFB0303804)
通讯作者:  guoht_001@opt.ac.cn   
作者简介:  郭俊江,2009年6月毕业于忻州师范学院,获得理学学士学位。现为中科院西安光学精密机械研究所博士研究生,主要研究方向为新型原子层沉积微通道板功能层调控;郭海涛,中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员、博导,中国光学学会纤维光学与集成光学专业委员会委员、秘书长。2002年武汉理工大学复合材料专业本科毕业,2007年武汉理工大学材料科学与工程专业博士毕业。入选中科院“西部之光联合学者”人才计划和“青年创新促进优秀人才计划”。主要从事特种玻璃材料、光纤和光纤器件方面的研究工作,先后作为负责人主持国家自然科学基金三项、国家重点研发计划课题一项、预研重点项目一项及陕西省自然科学基金等国家和省部级项目共计10余项,在Optics Express,Journal of the American Ceramic Society等SCI期刊发表论文60余篇,申请国家发明专利10余项。
引用本文:    
郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
GUO Junjiang,ZHU Xiangping,XU Yantao,CAO Weiwei,ZOU Yongxing,LU Min,PENG Bo,SI Jinhai,GUO Haitao. Research Progress of Atomic Layer Deposited Micro-channel Plate. Materials Reports, 2020, 34(3): 3080-3089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110031  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3080
1 Pan J S.Journal of Applied Optics, 2003, 25(5), 5(in Chinese).
潘京生.应用光学, 2003, 25(5), 5.
2 Huang M, Dai L Y.Optoelectronic Technology, 1994, 14(2), 51(in Chinese).
黄敏, 戴丽英. 光电子技术, 1994, 14(2), 51.
3 Yang Y Q. Modern Weapon, 1986(4), 50(in Chinese).
杨玉勤.现代兵器, 1986(4), 50.
4 Fraser G W, Pearson J F, Lees J E, et al. Society of Photo-Optical Instrumentation Engineers,1988, 982, 98.
5 Bruce L, Mark D, Francis L. Society of Photo-Optical Instrumentation Engineers, 1996, 2808, 72.
6 Matsuoka K. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 148.
7 Liu Shulin, Deng Guangxu, Zhang Jisheng, et al.Journal of Applied Optics, 2003(8), 61(in Chinese).
刘术林, 邓广绪, 张继胜, 等.应用光学, 2003(8), 61.
8 Suntola T. USA Patent, EP4058430, 1977.
9 Suntola T. Thin Solid Films, 1992, 216(1), 84.
10 Suntola T. USA Patent, EP4413022, 1983.
11 Horton J R, Elizabeth C, Tasker G W, et al. USA Patent, EP5205902, 1993.
12 Goodman C H L, Pessa M V.Journal of Applied Physics, 1986, 60 (3), R65.
13 George S M, Ott A W, Klaus J W.Journal of Physical Chemistry, 1996, 100, 13121.
14 Wu Y Y, Li B S, Wang C Q.Equioment for Electronic Products Manufacturing, 2005, 34(6), 6(in Chinese).
吴宜勇, 李邦盛, 王春青.电子工业专用设备, 2005, 34(6), 6.
15 Tuomo Suntola. USA Patent, EP4058430, 1977.
16 George S M.Chemical Reviews, 2010, 110, 111.
17 Foroughi-Abari A, Cadien K. Nanofabrication Techniques and Principles, Springer-Werlag Wien Press, New York, 2012.
18 Niinistij L, Leskela M. Thin Solid Films, 1993, 225(1-2), 130.
19 Leskela M, Ritala M. Angewandte Chemie International Edition, 2003, 42 (45), 5548.
20 Marichy C, Bechelany M, Pinna N. Advanced Materials, 2012, 24 (8), 1017.
21 Ofer S, Robert B, Ana R L, et al. Thin Solid Films, 2002, 402, 248.
22 Yuan J P, Li W, Guo W N.Surface Technology, 2010, 39(4), 77(in Chinese).
袁军平, 李卫, 郭文显.表面技术, 2010, 39(4), 77.
23 Johnson R W, Hultqvist A, Bent S F.Materials Today, 2014, 17 (5), 236.
24 Miikkulainen V, LeskeläM, Ritala M, et al. Journal of Applied Physics, 2013, 113 (2), 021301.
25 Fraser G W, Pearson J F, Lees J E.Nuclear Instruments and Methods in Physics Reaearch, 1987, A254, 447.
26 Laprade B N, Reinhart S T, Wheeler M.Proceedings of SPIE, 1990, 1243, 162.
27 Kulov S K, Kesaev S A, Bugulova I R, et al. Proceedings of SPIE, 2005, 5834,1.
28 Lu N H, Yang Y G, Lv J W, et al.Physics Procedia, 2012, 26, 61.
29 Ritala M, Leskela M, Dekker J, et al.Chemical Vapor Deposition, 2015, 5(1), 7.
30 Ritala M, Leskela M. Nanotechnology, 1999, 10(1), 19.
31 Uhm H S, Choi E H, Cho G S. Applied Physics Letters, 2019,94, 031501.
32 Insepov Z, Ivanov V, Frisch H. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, B268, 3315.
33 Then A M, Pantano C G.Journal of Non-Crystalline Solids, 1990, 120, 178.
34 Minot M J, Bennis D C, Bond J L.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, A787, 78.
35 Ertley C, Siegmund O H W, Cremer T.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, doi.org/10.1016/j.nima.2017.10.050.
36 Mane A U, Peng Q, Wetstein M J, et al.Proceedings of SPIE, 2011, 8031, 80312H.
37 Ertley C, Siegmund O H W, Schwarz J, et al.Proceedings of SPIE, 2015, 9601, 96010S.
38 Pfaffinger M, Böhm M, Britting A, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, DOI.org/10.1016/j.nima.2017.10.084.
39 Siegmund O H W, McPhate J B, Jenlinsky S R, et al.IEEE Transactions on Nuclear Science, 2013, 60(2), 923.
40 Siegmund O H W, Richner N, Gunjala G, et al. Proceedings of SPIE, 2013, 8859, 88590Y.
41 Minot M J, Adams B W, Aviles M, et al. Proceedings of SPIE, 2016, 9968, 99680X.
42 Beaulieu D R, Gorelikov D, Klotzsch H, et al. Nuclear Instruments and Methods in Physics Research A, 2011, 663, S59.
43 Zhang H, Cui W Z. Space Electronic Technology, 2016(3), 7(in Chinese).
张恒, 崔万照. 空间电子技术, 2016(3), 7.
44 Jokela S J, Veryovkin I V, Zinovev A V, et al. Physics Procedia, 2012, 37, 740.
45 Joy D C.Scanning, 1995, 17, 270.
46 Uhm H S, Choi E H, Cho G S.Applied Physics Letters, 2009, 94, 03151.
47 Conneely T M, Milnes J S, Howorth J. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, A732, 388.
48 Xu T, Li Q, Xu Y L, et al. Proceedings of SPIE, 2018, 10848, 108480H.
49 Elam J W, Routkevitch D, George S M. Journal of the Electrochemical Society, 2003, 150(6), G339.
50 Mane A U, Elam J W.Proceedings of SPIE, 2013, 8818, 88180M.
51 Mane A U, Elam J W.Chemical Vapor Deposition, 2013, 19, 186.
52 Elam J W, Mane A U, Libera J, et al.ECS Transactions, 2013, 58(10), 249.
53 Mane A U, Tong W M, Brodie A D, et al. ECS Transactions, 2014, 64(9), 3.
54 Mane A U, Elam J W, Robert G, et al.Proceedings of SPIE, 2017, 9968, 99680C.
55 Siegmund O H W, Fujiwara K, Hemphill R, et al. Proceedings of SPIE, 2011, 8145, 81450J.
56 Siegmund O.H.W, McPhate J B, Tremsin A S, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, A787, 110.
57 Ertley C, Siegmund O H W, Schwarz J, et al.Proceedings of SPIE, 2015, 9601, 96010S.
58 O'Mahony A, Craven C A, Minot M J, et al.Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 2015, 34(1), 01A128.
59 Cong X Q, Qiu X B, Sun J N, et al.Infrared and Laser Engineering, 2016, 45 (9), 0916002.
60 Huang Y G, Gu Z A, Zhang Y, et al.Journal of the Chinese Ceramic Society, 2012, 40(7), 994.
61 Huang Y G, Zhang Y, Liu H, et al. Proceedings of SPIE, 2011, 8194, 81941Q.
62 Yan B J, Liu S L, Heng Y K.Nanoscale Research Letters, 2015, 10, 162.
63 Yang Y Z, Yan B J, Liu S L, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 868, 43.
[1] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[2] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[3] 盛传德, 熊新红, 朱超, 戴彭丹, 章桥新. 添加气膜孔对镍基单晶合金DD6蠕变寿命的影响[J]. 材料导报, 2019, 33(22): 3768-3771.
[4] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[5] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[6] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[7] 吴坤尧, 孟志新, 李兆, 丁旭, 张斌, 张俊彦. 低摩擦长寿命类富勒烯碳基薄膜的制备及其摩擦学特性[J]. 《材料导报》期刊社, 2018, 32(4): 559-562.
[8] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[9] 李俊超, 朱丽娜, 马国政, 王海斗. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21): 3796-3804.
[10] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[11] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[12] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[13] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[14] 肖智杰, 曾凯, 何晓聪, 邢保英, 张龙, 孙鑫宇. SUS304不锈钢点焊与胶焊接头的疲劳强度分析*[J]. 《材料导报》期刊社, 2017, 31(16): 112-116.
[15] 杨楠楠, 沈鸿烈, 蒋晔, 金磊, 李金泽, 吴文文, 余双龙, 杨艳. 二氧化硅纳米球对硼酸源扩散形成p+硅层性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 11-14.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed