1 State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China 2 University of Chinese Academy of Sciences,Beijing 100049,China 3 School of Electronic and Information Engineering,Xi'an Jiao Tong University,Xi'an 710049,China
Abstract: The micro-channel plate (MCP) is the core device for electronic multiplication and signal amplification in the fields of optical communication and optoelectronic technology, and the performance improvement research of MCP is mainly focused on increasing gain, extending service life and reducing dark count. Currently, the commonly used commercial MCPs are still prepared based on the traditional lead silicate glass via hydrogen reduction process. Although its gain, lifetime and dark count can reach 103, 0.3 C/cm2, 0.25 events/(s·cm2), respectively, optimized by four generations of glass components and preparation process, the glass composition and complicated preparation process limit its further enhancement in performance, e.g. lower ion feedback and background noise, and higher gain. In view of this,researchers have proposed and perfected a new solution over the past decade:adopting atomic layer deposition (ALD) techno-logy to deposit functional layers, including the conductive layers and secondary electron emission layers onto the surface of borosilicate glass substrates. Thereby, an MCP with conduction and electron multiplication capability is obtained. This novel ALD-MCP can effectively avoid the restriction of substrate glass on its performance optimization, realize the independent design of the substrate glass and the functional layer’s materials, and significantly improve the comprehensive performance of the MCP. Through continuous attempts, the ALD functional layers exhibiting much superior performance to that of traditional MCP have been developed. The prevailing deposition materials for conductive layer are Al2O3/ZnO, Al2O3/W or Al2O3/Mo , and for the secondary electron emission layers are MgO or Al2O3, with the products' gain elevated to 104, dark count reduced to 0.078 events/(s·cm2), and lifetime prolonged to 7 C/cm2. However, its stability still requires further improvement. In addition, deeper investigations are needed to improve deposition efficiency, and to optimize and regulate the performance of functional layers. This paper provides a systematic summary over the worldwide research status of ALD-MCP from the perspectives of functional layer composition and product performance. Moreover, it also gives a critical discussion involving the problems in current research and a prospective outlook for future development trends.
作者简介: 郭俊江,2009年6月毕业于忻州师范学院,获得理学学士学位。现为中科院西安光学精密机械研究所博士研究生,主要研究方向为新型原子层沉积微通道板功能层调控;郭海涛,中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员、博导,中国光学学会纤维光学与集成光学专业委员会委员、秘书长。2002年武汉理工大学复合材料专业本科毕业,2007年武汉理工大学材料科学与工程专业博士毕业。入选中科院“西部之光联合学者”人才计划和“青年创新促进优秀人才计划”。主要从事特种玻璃材料、光纤和光纤器件方面的研究工作,先后作为负责人主持国家自然科学基金三项、国家重点研发计划课题一项、预研重点项目一项及陕西省自然科学基金等国家和省部级项目共计10余项,在Optics Express,Journal of the American Ceramic Society等SCI期刊发表论文60余篇,申请国家发明专利10余项。
1 Pan J S.Journal of Applied Optics, 2003, 25(5), 5(in Chinese). 潘京生.应用光学, 2003, 25(5), 5. 2 Huang M, Dai L Y.Optoelectronic Technology, 1994, 14(2), 51(in Chinese). 黄敏, 戴丽英. 光电子技术, 1994, 14(2), 51. 3 Yang Y Q. Modern Weapon, 1986(4), 50(in Chinese). 杨玉勤.现代兵器, 1986(4), 50. 4 Fraser G W, Pearson J F, Lees J E, et al. Society of Photo-Optical Instrumentation Engineers,1988, 982, 98. 5 Bruce L, Mark D, Francis L. Society of Photo-Optical Instrumentation Engineers, 1996, 2808, 72. 6 Matsuoka K. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 148. 7 Liu Shulin, Deng Guangxu, Zhang Jisheng, et al.Journal of Applied Optics, 2003(8), 61(in Chinese). 刘术林, 邓广绪, 张继胜, 等.应用光学, 2003(8), 61. 8 Suntola T. USA Patent, EP4058430, 1977. 9 Suntola T. Thin Solid Films, 1992, 216(1), 84. 10 Suntola T. USA Patent, EP4413022, 1983. 11 Horton J R, Elizabeth C, Tasker G W, et al. USA Patent, EP5205902, 1993. 12 Goodman C H L, Pessa M V.Journal of Applied Physics, 1986, 60 (3), R65. 13 George S M, Ott A W, Klaus J W.Journal of Physical Chemistry, 1996, 100, 13121. 14 Wu Y Y, Li B S, Wang C Q.Equioment for Electronic Products Manufacturing, 2005, 34(6), 6(in Chinese). 吴宜勇, 李邦盛, 王春青.电子工业专用设备, 2005, 34(6), 6. 15 Tuomo Suntola. USA Patent, EP4058430, 1977. 16 George S M.Chemical Reviews, 2010, 110, 111. 17 Foroughi-Abari A, Cadien K. Nanofabrication Techniques and Principles, Springer-Werlag Wien Press, New York, 2012. 18 Niinistij L, Leskela M. Thin Solid Films, 1993, 225(1-2), 130. 19 Leskela M, Ritala M. Angewandte Chemie International Edition, 2003, 42 (45), 5548. 20 Marichy C, Bechelany M, Pinna N. Advanced Materials, 2012, 24 (8), 1017. 21 Ofer S, Robert B, Ana R L, et al. Thin Solid Films, 2002, 402, 248. 22 Yuan J P, Li W, Guo W N.Surface Technology, 2010, 39(4), 77(in Chinese). 袁军平, 李卫, 郭文显.表面技术, 2010, 39(4), 77. 23 Johnson R W, Hultqvist A, Bent S F.Materials Today, 2014, 17 (5), 236. 24 Miikkulainen V, LeskeläM, Ritala M, et al. Journal of Applied Physics, 2013, 113 (2), 021301. 25 Fraser G W, Pearson J F, Lees J E.Nuclear Instruments and Methods in Physics Reaearch, 1987, A254, 447. 26 Laprade B N, Reinhart S T, Wheeler M.Proceedings of SPIE, 1990, 1243, 162. 27 Kulov S K, Kesaev S A, Bugulova I R, et al. Proceedings of SPIE, 2005, 5834,1. 28 Lu N H, Yang Y G, Lv J W, et al.Physics Procedia, 2012, 26, 61. 29 Ritala M, Leskela M, Dekker J, et al.Chemical Vapor Deposition, 2015, 5(1), 7. 30 Ritala M, Leskela M. Nanotechnology, 1999, 10(1), 19. 31 Uhm H S, Choi E H, Cho G S. Applied Physics Letters, 2019,94, 031501. 32 Insepov Z, Ivanov V, Frisch H. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, B268, 3315. 33 Then A M, Pantano C G.Journal of Non-Crystalline Solids, 1990, 120, 178. 34 Minot M J, Bennis D C, Bond J L.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, A787, 78. 35 Ertley C, Siegmund O H W, Cremer T.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, doi.org/10.1016/j.nima.2017.10.050. 36 Mane A U, Peng Q, Wetstein M J, et al.Proceedings of SPIE, 2011, 8031, 80312H. 37 Ertley C, Siegmund O H W, Schwarz J, et al.Proceedings of SPIE, 2015, 9601, 96010S. 38 Pfaffinger M, Böhm M, Britting A, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, DOI.org/10.1016/j.nima.2017.10.084. 39 Siegmund O H W, McPhate J B, Jenlinsky S R, et al.IEEE Transactions on Nuclear Science, 2013, 60(2), 923. 40 Siegmund O H W, Richner N, Gunjala G, et al. Proceedings of SPIE, 2013, 8859, 88590Y. 41 Minot M J, Adams B W, Aviles M, et al. Proceedings of SPIE, 2016, 9968, 99680X. 42 Beaulieu D R, Gorelikov D, Klotzsch H, et al. Nuclear Instruments and Methods in Physics Research A, 2011, 663, S59. 43 Zhang H, Cui W Z. Space Electronic Technology, 2016(3), 7(in Chinese). 张恒, 崔万照. 空间电子技术, 2016(3), 7. 44 Jokela S J, Veryovkin I V, Zinovev A V, et al. Physics Procedia, 2012, 37, 740. 45 Joy D C.Scanning, 1995, 17, 270. 46 Uhm H S, Choi E H, Cho G S.Applied Physics Letters, 2009, 94, 03151. 47 Conneely T M, Milnes J S, Howorth J. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, A732, 388. 48 Xu T, Li Q, Xu Y L, et al. Proceedings of SPIE, 2018, 10848, 108480H. 49 Elam J W, Routkevitch D, George S M. Journal of the Electrochemical Society, 2003, 150(6), G339. 50 Mane A U, Elam J W.Proceedings of SPIE, 2013, 8818, 88180M. 51 Mane A U, Elam J W.Chemical Vapor Deposition, 2013, 19, 186. 52 Elam J W, Mane A U, Libera J, et al.ECS Transactions, 2013, 58(10), 249. 53 Mane A U, Tong W M, Brodie A D, et al. ECS Transactions, 2014, 64(9), 3. 54 Mane A U, Elam J W, Robert G, et al.Proceedings of SPIE, 2017, 9968, 99680C. 55 Siegmund O H W, Fujiwara K, Hemphill R, et al. Proceedings of SPIE, 2011, 8145, 81450J. 56 Siegmund O.H.W, McPhate J B, Tremsin A S, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, A787, 110. 57 Ertley C, Siegmund O H W, Schwarz J, et al.Proceedings of SPIE, 2015, 9601, 96010S. 58 O'Mahony A, Craven C A, Minot M J, et al.Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 2015, 34(1), 01A128. 59 Cong X Q, Qiu X B, Sun J N, et al.Infrared and Laser Engineering, 2016, 45 (9), 0916002. 60 Huang Y G, Gu Z A, Zhang Y, et al.Journal of the Chinese Ceramic Society, 2012, 40(7), 994. 61 Huang Y G, Zhang Y, Liu H, et al. Proceedings of SPIE, 2011, 8194, 81941Q. 62 Yan B J, Liu S L, Heng Y K.Nanoscale Research Letters, 2015, 10, 162. 63 Yang Y Z, Yan B J, Liu S L, et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 868, 43.