Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 264-270    https://doi.org/10.11896/cldb.201902012
  无机非金属及其复合材料 |
基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测
吴彰钰1, 余红发1, 麻海燕1, 冯滔滔2, 达波1
1 南京航空航天大学土木工程系,南京 210016
2 东南大学材料科学与工程系,南京 210096
Calculating the Service Life of High Volume Slag Concrete Structure Based on Reliability in Ocean Splash Area
WU Zhangyu1, YU Hongfa1, MA Haiyan1, FENG Taotao2, DA Bo1
1 Department of Civil Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016
2 Department of Materials Science and Engineering, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 1486KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 海洋浪溅区的混凝土结构,由于长期受到氯盐的侵蚀和海浪冲刷作用,导致混凝土结构发生钢筋锈蚀、保护层胀裂剥落等耐久性破坏,无法满足长期服役要求。本工作选取3种不同矿渣掺量的高性能矿渣混凝土进行实验室自然扩散和海洋浪溅区现场暴露试验,基于可靠度理论和修正氯离子扩散理论的ChaDuraLife V1.0寿命分析软件,对海洋浪溅区的高性能矿渣混凝土结构进行寿命分析与研究。结果表明:随着服役时间的延长,海洋环境下高性能矿渣混凝土结构的失效概率逐渐增大,可靠度指标逐渐降低。随着矿渣掺量和保护层厚度的增大,高性能矿渣混凝土结构的服役寿命呈增长趋势。海洋浪溅区环境下,矿渣含量为35%、粉煤灰含量为15%、强度等级为C50的高性能矿渣混凝土在保护层厚度取7 cm、8 cm和9 cm的情况下,其服役寿命分别可以满足50 a、100 a和120 a的使用寿命要求。同时,建议将GBT50476-2008《混凝土结构耐久性设计规范》中规定的浪溅区混凝土最小保护层厚度和28 d氯离子侵入指标 DRCM最大值进行修正,以满足其规定的设计使用年限要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴彰钰
余红发
麻海燕
冯滔滔
达波
关键词:  海洋环境  矿渣混凝土  氯离子扩散  可靠度  寿命设计    
Abstract: The long-term erosion and scouring effect of sea waves usually causes corrosion to steel bar as well as swelling and cracking of protective la-yer, which eventually affect durability and service life of concrete structures constructed in marine condition. Based on the reliability theory, modified chloride diffusion theory and the ChaDuraLife V1.0 life analysis software, herein we selected 3 kinds of high performance concrete differing in slag content and conducted the service life calculation and analysis upon long-term exposure to laboratory and marine wave condition. The results indicated that: the failure probability of high performance slag concrete structure in marine environment gradually increases and the reliabi-lity index gradually decreases as time goes on during service. Either a higher slag content or a larger thickness of protective layer is beneficial to the service life of high-performance slag concrete structure. Under the circumstance of ocean wave splash zone, the C50 high-performance slag concretes in which slag content and fly ash content are 35% and 15%, respectively, could meet the service life requirements of 50 a,100 a and 120 a in the cases of protective layer thicknesses of 7 cm,8 cm and 9 cm. In addition, we suggest that the minimum protective layer thickness of concrete in splashed zone and the maximum DRCM (28 d age chloride diffusion coefficient) in the "Code for Design of Durability of Concrete Structures" are revised to attain the stipulated designed service life requirements.
Key words:  marine condition    slag concrete    chloride diffusion    reliability    service life design
                    发布日期:  2019-01-31
ZTFLH:  TU528  
基金资助: 基金项目:国家重点基础研究发展计划(973计划)(2015CB6551002);高性能土木工程材料国家重点实验室重点基金项目(2015CEM001);江苏省普通高校研究生科研创新计划项目(KYLX15-0230);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170109)
作者简介:  吴彰钰,2016年进入南京航空航天大学建筑与土木工程专业,硕士研究生,主要从事珊瑚混凝土耐久性与钢筋锈蚀研究。余红发,南京航空航天大学,教授。2004年毕业于东南大学,博士学位。yuhongfa@nuaa.edu.cn
引用本文:    
吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
WU Zhangyu, YU Hongfa, MA Haiyan, FENG Taotao, DA Bo. Calculating the Service Life of High Volume Slag Concrete Structure Based on Reliability in Ocean Splash Area. Materials Reports, 2019, 33(2): 264-270.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902012  或          http://www.mater-rep.com/CN/Y2019/V33/I2/264
1 Shi J J, Sun W.Journal of the Chinese Ceramic Society,2010,38(9),1753(in Chinese).
施锦杰,孙伟.硅酸盐学报,2010,38(9),1753.
2 Ferreira R M. Probability-based durability analysis of concrete structures in marine environment. Taylor & Francis,2004.
3 Hong D H. Corrosion and protection of reinforcement in concrete. China Railway Publishing House,1998.
洪定海.混凝土中钢筋的腐蚀与保护.中国铁道出版社,1998.
4 Hong N F. Industrial Construction,1999,29(8),66(in Chinese).
洪乃丰.工业建筑,1999,29(8),66.
5 Hong D H. Journal of Building Materials,1998(1),84(in Chinese).
洪定海.建筑材料学报,1998(1),84.
6 Yuan C F, Niu D T. Journal of Wuhan University of Technology,2013,35(4),73(in Chinese).
元成方,牛荻涛.武汉理工大学学报,2013,35(4),73.
7 Nakamura N, Saki M, Swamy R N, In: The 4th International Conference of Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. Istanbul,1992.
8 Osborne G J. Cement & Concrete Composites,1999,21(1),11.
9 Zhao Q, Wei S, Zheng K, et al. Journal of the Chinese Ceramic Society,2005,33(7),837.
10 Zheng K R, Sun W, Jia Y T, et al.Journal of Southeast University (Na-tural Science Edition),2004,34(3),361(in Chinese).
郑克仁,孙伟,贾艳涛,等.东南大学学报(自然科学版),2004,34(3),361.
11 Higgins D, Uren M. Concrete,1991,25(6),17.
12 Bijen J.Construction & Building Materials,1996,10(5),309.
13 Zheng K R, Sun W, Jia Y T, et al. Construction Technology,2005(1),39(in Chinese).
郑克仁,孙伟,贾艳涛,等.建筑技术,2005(1):39.
14 Jiang L H.Concrete,2001(11),8(in Chinese).
蒋林华.混凝土,2001(11),8.
15 The European Union-Brite EuRam III. General guidelines for durability design and redesign. Brussels,2000, pp.995.
16 Life-365 Consortium II. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides, Washington DC: SFA,2002.
17 Yu H F, Feng T T, Xu M, et al. Durability assessment and 120a service life design of dalian bay immersed tunnel, Nanjing University of Aeronautics and Astronautics & No3 Engineering Company Ltd of CCCC First Harbor Engineering Company Ltd,2017(in Chinese).
余红发,冯滔滔,许梅,等.大连湾海底沉管隧道结构的耐久性评估与120年寿命初步设计研究报告.南京航空航天大学,中交一航局三公司,2017.
18 Yu H F. Study on high performance concrete in salt lake: Durability, mechanism and service life prediction. Ph.D. Thesis, Southeast University, China,2011(in Chinese).
余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法.博士学位论文,东南大学,2004.
19 Yu H F, Sun W, Yan L H, et al. Journal of the Chinese Ceramic Society,2002,30(6),686(in Chinese).
余红发,孙伟,鄢良慧,等.硅酸盐学报,2002,30(6),686.
20 Yu H F. ChaDuraLife V1.0 chloride environment concrete structure life prediction model and computer software. Nanjing University of Aeronautics and Astronautics,2015(in Chinese).
余红发.ChaDuraLife V1.0氯盐环境下混凝土结构寿命预测模型与计算机软件.南京航空航天大学,2015.
21 Collepardi M, Marcialis A, Turriziani R. Cemento,1970(4),157.
22 Collepardi M, Marcialis A, Turriziani R. Journal of the American Ceramic Society,2010,55(10),534.
23 Zhong W L, Lu Z Q, Su Y S. Port and Waterway Engineering,2014(5),64(in Chinese).
仲维亮,芦志强,苏永生.水运工程,2014(5),64.
24 Xu M. Study on the durability of concrete in dalian port and the chlorine ion diffusion coefficient. Master’s thesis, Nanjing University of Aeronautics and Astronautics,China,2017(in Chinese).
许梅.大连港混凝土耐久性调查及氯离子扩散系数时表规律研究.硕士学位论文,南京航空航天大学,2017.
25 Feng T T. Durability evaluation and service life design of Dalian Bay submarine immersed tunnel concrete structure. Master’s thesis, Nanjing University of Aeronautics and Astronautics,China,2017(in Chinese).
冯滔滔.大连湾海底沉管隧道混凝土结构的耐久性评估与服役寿命设计.硕士学位论文,南京航空航天大学,2017.
26 Lesser G R, Roelvink J A, van Kester J A T M, et al. Coastal Enginee-ring,2004,51(8),883.
27 Walstra D J R., Hoekstra R, Tonnon P K, et al. Coastal Engineering,2013,77(8),57.
28 Sun L C, Zhang N, Chen C. Study on silt in Tianjin port, China Ocean Press,2010(in Chinese).
孙连成,张娜,陈纯.淤泥质海岸天津港泥沙研究.海洋出版社,2010.
29 张玮,唐磊,王启明,等.中国专利,CN102288729 B,2014.
30 Odd E Gjorv. Durability design of concrete structures in the severe environments. Taylor & Francis Croup,2009.
31 Da B, Yu H F, Ma H Y, et al. Journal of the Chinese Ceramic Society,2016,44(2),253(in Chinese).
达波,余红发,麻海燕,等.硅酸盐学报,2016,44(2),253.
32 Amey S L, Johnson D A, Miltenberger M A, et al. Journal ACI Structure,1998,95(1),27.
33 Hinatsu J T, Graydon W F, Foulkes F R. Journal of Applied Electroche-mistry,1990,20(5),841.
34 GB/T50476-2008 Code for durability design of concrete structures, China Architecture & Building Press,2009(in Chinese).
[1] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed