Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2837-2841    https://doi.org/10.11896/j.issn.1005-023X.2018.16.025
  金属与金属基复合材料 |
不同加载频率下FV520B-I的疲劳行为与疲劳寿命
赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰
大连理工大学机械工程学院,大连 116023
Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies
ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie
School of Mechanical Engineering, Dalian University of Technology, Dalian 116023
下载:  全 文 ( PDF ) ( 1286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对高强度钢FV520B-I分别进行了140 Hz和20 kHz两种加载频率下的疲劳实验。实验数据表明,20 kHz加载频率下的疲劳寿命值均高于同应力幅值140 Hz加载频率下的疲劳寿命值,而20 kHz加载频率下材料的疲劳强度(450 MPa)低于140 Hz加载频率下的疲劳强度(500 MPa)。试件断口分析表明,加载频率的大幅提高使得疲劳失效由表面粗糙度缺陷引起的表面疲劳失效转变为内部非金属夹杂物引起的内部疲劳失效。基于三参数模型对实验数据进行拟合,建立了FV520B-I在不同加载频率下的疲劳寿命转换模型,提出了FV520B-I的疲劳寿命转换系数S'0,并发现转换系数S'0随着加载应力幅值的增大而增大,即加载频率对疲劳寿命的影响随着应力幅值的增大而增强。研究结果表明,疲劳寿命转换模型可以将超高加载频率下的疲劳寿命转换为传统加载频率下的疲劳寿命,且可以应用于FV520B-I的再制造工程疲劳分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵清晨
王金龙
张元良
沈毅鸿
刘淑杰
关键词:  超高周疲劳  FV520B-I  加载频率  疲劳寿命转换  三参数模型    
Abstract: Fatigue tests for FV520B-I were carried out at two frequencies: the conventional frequency (140 Hz) and the ultrasonic frequency (20 kHz). The experiment data indicated that fatigue life at the ultrahigh loading frequency was higher than the one under the low loading frequency at the same stress amplitude, but the fatigue strength (450 MPa) at the ultrahigh loading frequency was lower than the one (500 MPa) under the low loading frequency. By analyzing the fracture of the specimen using scanning electron microscope, it was shown that with the dramatic increase of loading frequency, cause of fatigue failure changed from surface roughness defect to internal non-metallic inclusions. Fatigue life conversion model for FV520B-I were established with comprehensive use of a fitting algorithm based on the combination of experimental data and classic three-parameter-model. The fatigue life conversion coefficient for FV520B-I was proposed, whose value increased with the increasing of stress amplitude. A clear understand of the effect of loading frequency on the fatigue property of FV520B-I was given, which has a great significance in guaranteeing the accuracy of the actual fatigue analysis of FV520B-I in the remanufacturing engineering.
Key words:  ultra-high cycle fatigue    FV520B-I    loading frequency    fatigue life conversion    three-parameter-model
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  O346.2+3  
  U467.4+97  
  TH11  
基金资助: 国家自然科学基金(51375074);中央高校基本科研业务费资助(DUT17ZD230;DUT17GF214)
通讯作者:  张元良:通信作者,男,1959年生,博士,教授,博士研究生导师,主要研究方向为可持续设计、疲劳寿命预测 E-mail:zylgzh@dlut.edu.cn   
作者简介:  赵清晨:男,1992年生,硕士,研究方向为疲劳寿命预测、可再制造性判断 E-mail:542864830@qq.com
引用本文:    
赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies. Materials Reports, 2018, 32(16): 2837-2841.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.025  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2837
1 Zhang M, Wang W Q, Wang P F, et al. Fatigue behavior and me-chanism of FV520B-I in ultrahigh cycle regime [C]//20th European Conference on Fracture (ECF20).Norway,2014.
2 Zhang Y L, Wang J L, Sun Q C, et al. Fatigue life prediction of FV520B with internal inclusions[J]. Materials and Design,2015,69:241.
3 Wang J L, Zhang Y L, Liu S J, et al. Competitive giga-fatigue life analysis owing to FV520B-I[J]. International Journal of Fatigue,2016,87:203.
4 Wang K, Wang F, Cui W, et al. Prediction of short fatigue crack growth of Ti-6Al-4V[J]. Fatigue and Fracture of Engineering Materials and Structures,2014,37(10):1075.
5 Machniewicz T. Fatigue crack growth prediction models for metallic materials part Ⅱ: Strip yield model-choices and decisions[J]. Fatigue and Fracture of Engineering Materials and Structures,2013,36(4):361.
6 Suh C M, Suh M S, Kim S G. Fracture mechanics of surface fatigue crack growth by ductile striation space measurement in notched Waspaloy[J]. Fatigue and Fracture of Engineering Materials and Structures,2012,35(1):30.
7 Jones R. Fatigue crack growth and damage tolerance[J]. Fatigue and Fracture of Engineering Materials and Structures,2014,37(5):463.
8 Chen F, Wang F, Cui W. Fatigue life prediction of engineering structures subjected to variable amplitude loading using the improved crack growth rate model[J]. Fatigue and Fracture of Engineering Materials and Structures,2012,35(3):278.
9 Tsutsumi N, Murakami Y, Doquet V. Effect of test frequency on fatigue strength of low carbon steel[J]. Fatigue and Fracture of Engineering Materials and Structures,2009,32(6):473.
10 Furuya Y, Torizuka S, Takeuchi E, et al. Ultrasonic fatigue testing on notched and smooth specimens of ultrafine-grained steel[J]. Materials and Design,2012,37:515.
11 Shalvandi M, Hojjat Y, Abdullah A, et al. Influence of ultrasonic stress relief on stainless steel 316 specimens: A comparison with thermal stress relief[J]. Materials and Design,2013,46:713.
12 Marines I, Bin X, Bathias C. An understanding of very high cycle fatigue of metals[J]. International Journal of Fatigue,2003,25(9-11):1101.
13 Bathias C, Drouillac L, Francois P L. How and why the fatigue S-N curve does not approach a horizontal asymptote[J]. International Journal of Fatigue,2001,23:143.
14 Marines I, Dominguez G, Baudry G, et al. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz[J]. International Journal of Fatigue,2003,25(9-11):1037.
15 Chen J Q, Takezono S, Irie M, et al. Load frequency effect on fatigue crack propagation in titanium at elevated temperature[J]. Acta Metallurgica Sinica,2000,36(8):813(in Chinese).
陈建桥,竹园茂男,入江胜,等.加载频率对中温环境下疲劳裂纹扩展的影响[J].金属学报,2000,36(8):813.
16 Han E H, Han Y M, Zheng Y L, et al. Effects of stress ratio and frequency on corrosion fatigue crack growth in low alloy steel[J]. Acta Metallurgica Sinica,1993,29(5):31(in Chinese).
韩恩厚,韩玉梅,郑宇礼,等.应力比和频率对低合金钢腐蚀疲劳裂纹扩展机理的影响[J].金属学报,1993,29(5):31.
17 Wang Y M. Effects of different loading approachs on the fatigue crack and expansion rate of iron 34CrNi3Mo[J]. Journal of Ningxia University (Natural Science Edition),1994,15(3):40(in Chinese).
王一民.不同加载制度对34CRNI3MO钢疲劳裂纹扩张速率的影响[J].宁夏大学学报:自然科学版,1994,15(3):40.
18 Zettl B, Mayer H, Stanzl-tschegg S E. Fatigue properties of Al-1Mg-0.6Si foam at low and ultrasonic frequencies[J]. International Journal of Fatigue,2001,23:565.
19 Guennec B, Ueno A, Sakai T, et al. Dislocation-based interpretation on the effect of the loading frequency on the fatigue properties of JIS S15C low carbon steel[J]. International Journal of Fatigue,2015,70:328.
20 Guennec B, Ueno A, Sakai T, et al. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior[J]. International Journal of Fatigue,2014,66:29.
21 Zhu M L, Liu L L, Xuan F Z. Effect of frequency on very high cycle fatigue behavior of a low strength Cr-Ni-Mo-V steel welded joint[J]. International Journal of Fatigue,2015,77:166.
22 Zhao A, Xie J J, Sun C Q, et al. Effects of strength level and loa-ding frequency on very-high-cycle fatigue behavior for a bearing steel[J]. International Journal of Fatigue,2012,38:46.
23 Nonaka I, Setowaki S, Ichikawa Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel[J]. International Journal of Fatigue,2014,60:43.24 Zhang Y Y, Duan Z, Shi H J. Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies[J]. Science China (Physics, Mechanics and Astronomy),2013,56(3):617.
25 Wang J L, Zhang Y L, Sun Q C, et al. Giga-fatigue life prediction of FV520B-I with surface roughness[J]. Materials and Design,2016,89:1024.
26 Stefanie S T. Very high cycle fatigue measuring techniques[J]. International Journal of Fatigue,2014,60:2.
27 Zhang J W, Song Q P, Zhang N, et al. Very high cycle fatigue pro-perty of high-strength austempered ductile iron at conventional and ultrasonic frequency loading[J]. International Journal of Fatigue,2014,70:235.
28 Mayer H, Schuller R, fitzka M. Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010 cycles[J]. International Journal of Fatigue,2013,57:113.
29 Gillis P P, Gross T S. Effect of strain rate on flow properties[J]. ASM Handbook,1985,8:38.
30 Chen J Q. Models for fatigue life distribution[J]. Journal of Mechanical Strength,1991,13(1):42(in Chinese).
陈建桥.疲劳寿命分布模型比较[J].机械强度,1991,13(1):42.
31 Fu H M. A formula of three-parameter power function for ε-N curves[J]. Acta Aeronautica ET Astronautica Sinica,1993,14(3):173(in Chinese).
傅惠民.ε-N曲线三参数幂函数公式[J].航空学报,1993,14(3):173.
32 Zhang M, Wang W Q, Wang P F, et al. Fatigue behavior and me-chanism of FV520B-I welding seams in a very high cycle regime[J]. International Journal of Fatigue,2016,87:22.
33 Zhang M, Wang W Q, Wang P F, et al. Fatigue behavior and me-chanism of FV520B in very high cycle regime[J]. Strength, Fracture and Complexity,2015,9:161.
34 (法)巴蒂亚斯,(法)皮诺,著.吴胜川,李源,王清远,译.材料与结构的疲劳[M].北京:国防工业出版社,2016:14.
[1] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[2] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[3] 周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed