Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 84-89    https://doi.org/10.11896/j.issn.1005-023X.2017.017.012
  材料综述 |
超高周疲劳的影响因素及疲劳机理的研究进展*
周磊1,2, 宋亚南2, 王海斗2, 李国禄1, 张建军1
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Influencing Factors and Fatigue Mechanism of Ultra High Cycle Fatigue: an Overview
ZHOU Lei1,2, SONG Yanan2, WANG Haidou2, LI Guolu1, ZHANG Jianjun1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1633KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高周疲劳的研究可以满足某些特殊零部件极高循环周次的要求。综述了近年来超高周疲劳的研究进展,从S-N曲线的特征、断面上的鱼眼形貌以及裂纹的萌生与扩展特征等方面介绍了超高周疲劳的典型特征。分析了影响超高周疲劳的若干因素,如氢的作用、加载频率、应力比和晶粒尺寸等。进而提出了一些今后超高周疲劳的研究方向:超高周疲劳裂纹扩展的微观机理、扩展速率尤其是微观、宏观上的控制参量的研究以及确定鱼眼与ODA区边缘的应力强度因子范围对内部裂纹扩展门槛值的影响作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周磊
宋亚南
王海斗
李国禄
张建军
关键词:  超高周疲劳  S-N曲线  影响因素  疲劳行为    
Abstract: The research of ultra high cycle fatigue can be helpful for some special parts, which are required for extremely high cycle number. The research progress of ultra high cycle fatigue in last decade is reviewed. The typical characteristics of the ultra high cycle fatigue are introduced, such as the characteristics of S-N curves, fish eye morphology on the section and the characteristics of the crack initiation and extension. The influencing factors on ultra high cycle fatigue, such as the effect of hydrogen, loading frequency, loading mode and grain size are analyzed. Future research directions of ultra high cycle fatigue, including microscopic mechanism of very high cycle fatigue crack propagation, extending rate (especially the research on the micro and macro control parameter), the effect of fish-eye and the stress intensity factor range of the edge of ODA area on internal crack extended threshold are put forward.
Key words:  ultra high cycle fatigue    S-N curve    influencing factor    fatigue behaviors
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB302.3  
基金资助: 国家自然科学基金重点项目(51535011);国防973计划(61328304)
通讯作者:  王海斗:通讯作者,男,1969年生,博士,教授,博士研究生导师,从事表面工程、摩擦学方面的研究 E-mail:wanghaidou@aliyun.com   
作者简介:  周磊:男,1993年生,硕士研究生,主要从事超高周疲劳的研究 E-mail:zhoulei_just@163.com;李国禄:男,1966年生,博士,教授,博士研究生导师,从事表面工程、摩擦学方面的研究 E-mail:liguolu@hebut.edu.cn
引用本文:    
周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
ZHOU Lei, SONG Yanan, WANG Haidou, LI Guolu, ZHANG Jianjun. Influencing Factors and Fatigue Mechanism of Ultra High Cycle Fatigue: an Overview. Materials Reports, 2017, 31(17): 84-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.012  或          http://www.mater-rep.com/CN/Y2017/V31/I17/84
1 Zhou Cheng’en, Xie Jijia, Hong Youshi. Retrospect and prospect of very high cycle fatigue[J]. J Mechan Strength, 2004,26(5):526(in Chinese).
周承恩, 谢季佳, 洪友士. 超高周疲劳研究现状及展望[J]. 机械强度,2004,26(5):526.
2 Lu Liantao, Zhang Weihua. Review of research on very high cycle fatigue of metal materials[J]. J Mechan Strength,2005,27(3):388(in Chinese).
鲁连涛, 张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度,2005,27(3):388.
3 Stanzl-Tschegg S E, Mayer H, Stich A. Variable amplitude loading in the very high-cycle fatigue regime[J]. Fatigue Fracture Eng Mater Struct,2002,25(25):887.
4 Tanaka K, Akiniwa Y. Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue Fracture Eng Mater Struct,2002,25(8-9):775.
5 Yin Shuming, Wang Chunhui, Zhao Shuzhe, et al. Super-long life fatigue behavior of extruded AZ31D magnesium alloy[J]. Light Met,2013(7):54(in Chinese).
尹树明, 王春晖, 赵述哲,等. 挤压镁合金AZ31D的超高周疲劳行为研究[J]. 轻金属,2013(7):54.
6 Song Yanan, Xu Binshi, Wang Haidou, et al. Testing method and failure characters of very high cycle fatigue of metal materials[J]. Chinese J Nonferrous Met,2015,25(12):3245(in Chinese).
宋亚南, 徐滨士, 王海斗,等. 金属材料超高周疲劳的试验方法及失效特征[J]. 中国有色金属学报,2015,25(12):3245.
7 Gu Yuli, Tao Chunhu, He Yuhuai, et al. Main characteristics of ultra-high cycle fatigue failure of metal materials[J]. Failure Anal Prevent,2011,6(3):193(in Chinese).
顾玉丽, 陶春虎, 何玉怀,等. 金属材料超高周疲劳失效的基本特征[J]. 失效分析与预防,2011,6(3):193.
8 Zhang Zhijun, He Bailin, Li Li. Research progress on ultra-long-life fatigue properties of steel and its influencing factors[J]. Iron Steel,2016,51(10):62(in Chinese).
张志军, 何柏林, 李力. 钢的超高周疲劳性能及其影响因素研究进展[J]. 钢铁,2016,51(10):62.
9 Tao Hua. A review of the ultrasonic fatigue research[J]. Aeronautical Sci Technol,1998(6):23(in Chinese).
陶华. 超声疲劳研究综述[J]. 航空科学技术,1998(6):23.
10 Zhang Pengyi. Experimental study on very high cycle fatigue of martensitic steel of 2Cr13 under different environment[D]. Lanzhou:Lanzhou University of Technology,2014(in Chinese).
张彭一. 不同介质环境下马氏体不锈钢2Cr13钢的超高周疲劳研究[D]. 兰州:兰州理工大学, 2014.
11 Li S X, Akid R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Eng Failure Anal,2013,34(8):324.
12 Hou Fang, Li Jiukai, Xie Shaoxiong, et al. Very high cycle fatigue behavior of rotor steel for the steam turbine under room temperature and 600 ℃[J]. China Measurement Test,2016,42(2):9(in Chinese).
侯方, 李久楷, 谢少雄,等. 汽轮机转子钢常温与600 ℃超高周疲劳行为研究[J]. 中国测试,2016,42(2):9.
13 Yan Yimin, Hu Zhengfei, Lin Fusheng, et al. Fatigue behavior of 30Cr1Mo1V rotor steel at elevated temperature after long-term ser-vice[J]. J Mater Eng,2012(11):38(in Chinese).
严益民, 胡正飞, 林富生,等. 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为[J]. 材料工程,2012(11):38.
14 Mayer H, Schuller R, Fitzka M. Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010, cycles[J]. Int J Fatigue, 2013,57:113.
15 Dai Jing’an. Study on ultrasonic bending fatigue property of thin sheet metallic materials[D].Chengdu: Southwest Jiaotong University,2012(in Chinese).
代景安. 金属薄板材料超声弯曲疲劳试验研究[D]. 成都:西南交通大学, 2012.
16 Sakai T, Takeda M, Shiozawa K. et al. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels[C]// Proceedings of the Seventh International Fatigue Congress,1999:572.
17 Natio T, Ueda H, Kikuchi M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J]. Metall Mater Trans A,1984,15(7):1431.
18 Natio T, Ueda H, Kikuchi M. Observation of fatigue fracture surface of carburized steel[J]. J Soc Mater Sci Jpn,1983,32:1162.
19 Stanzl S. A new experimental method for measuring life time and crack growth of materials under multi-stage and random loadings[J]. Ultrasonics,1981,19(6):269.
20 Marines I, Bin X, Bathias C. An understanding of very high cycle fatigue of metals[J]. Int J Fatigue,2003,25(s9-11):1101.
21 Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fracture Eng Mater Struct,2002,25(8-9):735.
22 Hu Yanhui, Zhang Zheng, Zhong Qunpeng,et al. Recent development of research on very high cycle fatigue of metal materials[J]. J Mechan Strength,2009,31(6):979.
23 Xie Shaoxiong, Li Jiukai, Hou Fang, et al. Fatigue behavior and microstructure of CrMoW rotor steel at elevated temperature in very high cycle regime[J]. J Sichuan University:Eng Sci Ed,2016(s1):187(in Chinese).
谢少雄, 李久楷, 侯方,等. CrMoW转子钢高温超高周疲劳与微观组织研究[J]. 四川大学学报:工程科学版,2016(s1):187.
24 Schijue J. Fatigue of structures and materials in the 20th century and the state of the art[J]. Mater Sci,2003,39(3):307.
25 Xue Xia, Xu Yang, et al. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure[J]. Int J Minerals, Metall Mater,2009,16(3):285.
26 Liu Y B, Li S X, Li Y D, et al. Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime[J]. Mater Sci Eng A,2011,528(3):935.
27 Hong Y, Zhao A, Qian G, et al. Fatigue strength and crack initiation mechanism of very-high-cycle fatigue for low alloy steels[J]. Metall Mater Trans A,2012,43(8):2753.
28 Hong Youshi, Zhao Aiguo, Qian Guian. Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metall Sinica,2009,45(7):769(in Chinese).
洪友士, 赵爱国, 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7):769.
29 Qian G, Zhou C, Hong Y. Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel[J]. Acta Mater,2011,59(4):1321.
30 Akiniwa Y, Miyamoto N, Tsuru H, et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime[J]. Int J Fatigue,2006,28(11):1555.
31 Yan Guiling, Wang Hong, Kang Guozheng, et al. Experimental study on the very high cycle fatigue properties of 6065A aluminum alloy for high speed train[J]. China Rail Way Sci,2014,35(1):67(in Chinese).
闫桂玲, 王弘, 康国政,等. 高速列车用6065A铝合金超高周疲劳性能试验研究[J]. 中国铁道科学,2014,35(1):67.
32 Bathias. There is no infinite fatigue life in metallic materials[J]. Fatigue Fracture Eng Mater Struct,1999,22(7):559.
33 Shanyavskiy A A. Fatigue limit—Material property as an opened or closed system? Practical view on the aircraft components failures in GCF area[J]. Int J Fatigue,2006,28(11):1647.
34 Bayraktar E, Garcias I M, Bathias C. Failure mechanisms of automotive metallic alloys in very high cycle fatigue range[J]. Int J Fatigue,2006,28(11):1590.
35 Zhu X, Shyam A, Jones J W, et al. Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles[J]. Int J Fatigue,2006,28(11):1566.
36 Mughrabi H. On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue Fracture Eng Mater Struct,2002,25(8-9):755.
37 He Bailin, Lv Zongmin, Wu Jian. Current study on review and prospects for high cycle fatigue steel[J]. Hot Work Technol, 2015(16):7(in Chinese).
何柏林, 吕宗敏, 吴剑. 钢的超高周疲劳性能研究现状及发展趋势[J]. 热加工工艺,2015(16):7.
38 Guan Xin, Meng Yanjun. Research and development on ultra high cycle fatigue[J]. Research Iron Steel,2009,37(1):58(in Chinese).
关昕, 孟延军. 超高周疲劳的研究进展[J]. 钢铁研究,2009,37(1):58.
39 Suresh S. Fatigue of materials[J]. Fatigue Fracture Eng Mater Struct,1991,28(12):1153.
40 Ochi Y, Matsumura T, Masaki K, et al. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels[J]. Fatigue Fracture Eng Mater Struct,2002,25(8-9):823.
41 Murakam Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels[J]. Biochem Pharmacology,1999,19(6):1879.
42 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int J Fatigue,1994,16(3):163.
43 李守新, 翁宇庆, 惠卫军,等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响[M]. 北京:冶金工业出版社,2010.
44 Hu Yanhui, Zhong Qunpeng, et al. Fatigue properties of S06 steel in long life regime under ultrasonic frequency[J]. J Beijing Univ Aeronautics Astronautics,2010,36(4):464(in Chinese).
胡燕慧, 钟群鹏,等. 超声振动载荷下S06钢的长寿命疲劳性能[J]. 北京航空航天大学学报,2010,36(4):464.
45 Marines I, Domonguez G, Baudry G, et al. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz[J]. Int J Fatigue,2003,25(9):1037.
46 Li Yongde, Li Shouxin, Yang Zhenguo, et al. Influence of hydrogen on ultrhigh cycle fatigue properties of high strength spring steel 50CrV4[J]. Acta Metall Sinica,2008,44(1):64(in Chinese).
李永德, 李守新, 杨振国,等. 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报,2008,44(1):64.
47 Xue Hongqian, Tao Hua. Super high cycle fatigue of high strength steels at a frequency of 20 kHz[J]. Mater Mechan Eng,2005, 29(5):12(in Chinese).
薛红前, 陶华. 20 kHz频率下高强度钢超高周疲劳研究[J]. 机械工程材料,2005,29(5):12.
48 Zhou Chao, Zhang Yongjian, Hui Weijun, et al. Effect of hydrogen on fatigue properties of high strength steel 42CrMoVNb[J]. J Iron Steel Res,2013,25(12):52(in Chinese).
周超, 张永健, 惠卫军,等. 氢对42CrMoVNb钢超高周疲劳性能的影响[J]. 钢铁研究学报,2013,25(12):52.
49 Zhou Chao, Zhang Yongjian, Hui Weijun, et al. Effect of hydrogen on very high cycle fatigue properties of high strength spring steel 60Si2CrVA[J]. J Iron Steel Res,2013,25(9):45(in Chinese).
周超, 张永健, 惠卫军,等. 氢对60Si2CrVA弹簧钢超高周疲劳性能的影响[J]. 钢铁研究学报,2013,25(9):45.
50 Shiozawa K, Lu L, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fracture Eng Mater Struct,2002,24(12):781.
51 褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988.
52 Yang Zhenguo, Zhang Jiming, Li Shouxin, et al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition[J]. Acta Metall Sinica,2005,41(11):1136(in Chinese).
杨振国, 张继明, 李守新, 等. 高周疲劳条件下高强钢临界夹杂物尺寸估算[J]. 金属学报,2005,41(11):1136.
53 Xue Hongqian. Investigation on fatigue behavior of materials in very high cycle regime under vibratory loading[D]. Xi’an: Northwestern Potytechnical University, 2006(in Chinese).
薛红前. 超声振动载荷下材料的超高周疲劳性能研究[D]. 西安:西北工业大学,2006.
54 Li W,Wang P, Lu L T, et al. Evaluation of gigacycle fatigue limit and life of high-strength steel with interior inclusion-induced failure [J]. Int J Damage Mechan,2014,23:1.
55 Kage M, Miller K J, Smith R A. Fatigue crack initiation and propagation in a low-crabon steel of two different grain sizes[J]. Fatigue Fracture Eng Mater Struct,1992,15(8):763.
56 Zhang Yongjian, Hui Weijun, Xiang Jinzhong, et al. Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta Metall Sinica,2009,45(7):880(in Chinese).
张永健, 惠卫军, 项金钟,等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880.
57 约翰J.伯克,王燕文.超细晶粒金属[M].北京:国防工业出版社,1982.
58 Nie Yihong, Hui Weijun, Fu Wantang, et al. Ultra high cycle fatigue behavior of a medium-carbon gigh strength spring steel NHS1[J]. Acta Metall Sinica,2007,43(10):1031(in Chinese).
聂义宏, 惠卫军, 傅万堂,等. 中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报,2007,43(10):1031.
59 Zhao Haimin, Hui Weijun, Nie Yihong, et al. Very high cycle fatigue facture behavior of high strength spring steel 60Si2CrVA[J]. Chinese J Mater Res,2008,22(5):526(in Chinese).
赵海民, 惠卫军, 聂义宏,等. 60Si2CrVA高强度弹簧钢的超高周疲劳破坏行为[J]. 材料研究学报,2008,22(5):526.
60 Hong Youshi, Fang Biao. Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Adv Mechan,1993,23(4):468(in Chinese).
洪友士, 方飚. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展,1993,23(4):468.
61 Wang Q Y, Berard J Y, Rathery S, et al. Technical note high-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires[J]. Fatigue Fracture Eng Mater Struct,1999,22(8):673.
[1] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[2] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[3] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[4] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[5] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[6] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[7] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[8] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[9] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[10] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[11] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[12] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[13] 王耀, 梅向阳, 段正洋, 何昌华, 徐晓军, 解道雷, 徐龙乾, 黄启华. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 《材料导报》期刊社, 2017, 31(19): 135-143.
[14] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed