Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23090020-11    https://doi.org/10.11896/cldb.23090020
  金属与金属基复合材料 |
贝氏体钢轨磨损与接触疲劳行为的研究进展
齐顺顺1, 王文健1, 汪渊1,2, 丁昊昊1,*
1 西南交通大学轨道交通运载系统全国重点实验室摩擦学研究所, 成都 610031
2 攀钢集团攀枝花钢铁研究院有限公司, 四川 攀枝花 617000
Research Progress on Wear and Contact Fatigue Behavior of Bainitic Rail
QI Shunshun1, WANG Wenjian1, WANG Yuan1,2, DING Haohao1,*
1 Tribology Research lnstitute, State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
2 Pangang Group Panzhihua Iron and Steel Research Institute Co.,Ltd., Panzhihua 617000, Sichuan, China
下载:  全 文 ( PDF ) ( 37825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢轨的磨损和滚动接触疲劳是轮轨接触过程中的主要损伤形式,对铁路轨道安全与维护有着至关重要的影响。随着列车轴重的增加,贝氏体钢轨疲劳损伤问题日益凸显,严重危及行车安全。本工作综述了国内外贝氏体钢轨磨损与疲劳损伤在近年来的研究进展,重点阐述了贝氏体钢轨的磨损和滚动接触疲劳性能及两者之间的竞争关系,并与珠光体钢轨的试验结果进行了对比;总结了不同因素(显微组织、服役条件、环境介质)对贝氏体钢轨磨损及滚动接触疲劳性能的影响;提出了未来重点研究方向建议:基于化学成分调控与热处理工艺参数优化的稳定残余奥氏体组织制备,贝氏体钢轨在不同服役条件下的适用性研究,贝氏体钢轨在腐蚀、高低温等复杂恶劣环境下的使用性能研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐顺顺
王文健
汪渊
丁昊昊
关键词:  贝氏体钢轨  磨损  滚动接触疲劳  影响因素    
Abstract: Rail wear and rolling contact fatigue, a main damage form during wheel-rail contact, has a vital impact on railway track safety and maintenance.With the increase of axle load of trains, the fatigue damage of bainite rail is becoming increasingly prominent, which seriously endangers the driving safety.This summary reviewed the research progress of wear and fatigue damage of bainite rail at home and abroad in recent years, the wear and rolling contact fatigue properties of bainite rail and the competitive relationship between them are described, and the test results are compared with those of pearlitic rail, the effects of different factors (microstructure, service conditions, environmental media) on the wear and rolling contact fatigue properties of bainite rail are summarized.The key research directions in the future are proposed as follows:The preparation of stable residual austenite structure based on chemical composition regulation and heat treatment process parameter optimization.Study on the applicability of bainite rail under different service conditions.Study on the performance of bainite rail in corrosive, high and low temperature environment.
Key words:  bainitic rail    wear    rolling contact fatigue    influence factor
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB31  
基金资助: 国家自然科学基金(52202510);四川省国际科技创新合作项目(2023YFH0023);2024年度西南交通大学优秀青年团队培育项目
通讯作者:  *丁昊昊,西南交通大学机械工程学院助理研究员、硕士研究生导师。主要从事轮轨服役损伤失效机制与控制技术方面研究工作。haohao.ding@swjtu.edu.cn   
作者简介:  齐顺顺,西南交通大学机械工程学院博士研究生,研究方向为贝氏体钢轨的磨损与滚动接触疲劳。
引用本文:    
齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
QI Shunshun, WANG Wenjian, WANG Yuan, DING Haohao. Research Progress on Wear and Contact Fatigue Behavior of Bainitic Rail. Materials Reports, 2025, 39(1): 23090020-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090020  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23090020
1 Xu X, Wang Z Y, Zhang X, et al. International Journal of Fatigue, 2022, 161, 106922.
2 Xu X, Wang Z, Gao G H, et al. International Journal of Fatigue, 2022, 160, 106872.
3 Zhang T Y, Wang Y, Zhang C, et al. International Journal of Fatigue, 2023, 172, 107641.
4 Zhang R J, Zheng C L, Lyu B, et al. Engineering Failure Analysis, 2022, 137, 106875.
5 Trummer G, Marte C, Dietmaier P, et al. Wear, 2016, 352, 136.
6 Ding H H, Yang J Y, Wang W J, et al. Journal of Manufacturing Processes, 2022, 73, 544.
7 Zeng D F, Lu L T, Gong Y H, et al. Materials & Design, 2016, 92, 998.
8 Hu Y, Guo L C, Maiorino M, et al. Wear, 2020, 460, 203455.
9 Xiong S B. Research on microstructure and properties of new heavy rail bainitic steel. Master's Thesis, Xihua University, China, 2016 (in Chinese).
熊师兵. 重载铁路用新型贝氏体钢组织性能研究. 硕士学位论文, 西华大学, 2016.
10 Jimbo S, Nambu S. Crystals, 2023, 13(3), 414.
11 Chen J M, Li X F, Wang G, et al. PTCA. (Part A:Phys. Test), 2022, 58(11), 6 (in Chinese).
陈洁明, 李雪峰, 王刚, 等. 理化检验-物理分册, 2022, 58(11), 6.
12 Zheng C L, Zhang F C, Lv B, et al. Journal of Mechanical Engineering, 2018, 54(4), 176 (in Chinese).
郑春雷, 张福成, 吕博, 等. 机械工程学报, 2018, 54(4), 176.
13 Gui X L, Wang K, Su H, et al. Materials Reports, 2020, 34(22), 22136 (in Chinese).
桂晓露, 王琨, 苏浩, 等. 材料导报, 2020, 34(22), 22136.
14 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 120 (in Chinese).
程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 120.
15 Lesage T, Avettand-Fènoël M N, Balloy D, et al. Materials Today Communications, 2022, 31, 103259.
16 Garcia-Mateo C, Caballero F G, Chao J, et al. Journal of Materials Science, 2009, 44, 4617.
17 Al-Juboori A, Zhu H T, Li H J, et al. Engineering Failure Analysis, 2023, 107411.
18 Lv J, Yang Q Q, Zou D Q, et al. Railway Engineering, 2020, 60(1), 120 (in Chinese).
吕晶, 杨其全, 邹定强, 等. 铁道建筑, 2020, 60(1), 120.
19 Wang K K, Microstructure and Mechanical Properties Optimization of Bainitic Rail Steels. Ph. D. Thesis, Beijing Jiaotong University, China, 2017 (in Chinese).
王凯凯. 贝氏体钢轨钢组织调控与性能优化. 博士学位论文, 北京交通大学, 2017.
20 Ordóñez Olivares R, Garcia C I, DeArdo A, et al. Wear, 2011, 271(1-2), 364.
21 Gui X L, Wang K K, Gao G H, et al. Materials Science and Engineering:A, 2016, 657, 82.
22 Wang B S, Research on preparative technique and characteristics of new bainitic steel for heavy rail. Master's Thesis, Hebei University of Technology, China, 2020 (in Chinese).
王宝帅. 重载轨道用新型贝氏体钢的制备及性能研究. 硕士学位论文, 河北工业大学, 2017.
23 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Materials Science and Technology, 2013, 17(5), 512.
24 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Materials Science and Technology, 2013, 17(5), 517.
25 Clayton P, Sawley K J, Bolton P J, et al. Wear, 1987, 120(2), 199.
26 Yokoyama H, Mitao S, Yamamoto S, et al. NKK Technical Report-Japanese Edition, 2000, 84, 17.
27 Pacyna J. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 28(1), 19.
28 Sawley K, Kristan J. Fatigue & Fracture of Engineering Materials & Structures. 2003, 26(10), 1019.
29 Chen Z Y, Zhou Q Y, Zhang Y H, et al, Journal of the China Railway Society, 2013, 35(8), 75 (in Chinese).
陈朝阳, 周清跃, 张银花, 等. 铁道学报, 2013, 35(8), 75.
30 Tan Z L, Gao B, Gao G H, et al. Heat Treatment of Metals, 2018, 43(4), 10 (in Chinese).
谭谆礼, 高博, 高古辉, 等. 金属热处理, 2018, 43(4), 10.
31 Gao G H, Gui X L, Tan Z L, et. al. Materials Reports, 2017, 31, 74 (in Chinese).
高古辉, 桂晓露, 谭谆礼, 等. 材料导报, 2017, 31, 74.
32 Zou D Q, Yang Q Q, Lu G J, et al. Rail failure analysis and damage map, China Railway Publishing House, 2010, pp. 50 (in Chinese).
邹定强, 杨其全, 卢观健, 等. 钢轨失效分析和伤损图谱, 中国铁道出版社, 2010, pp. 50.
33 Liu Q Y, Zhang B, Zhou Z R. China Mechanical Engineering, 2002(18), 72 (in Chinese).
刘启跃, 张波, 周仲荣. 中国机械工程, 2002(18), 72.
34 Hu Y. Study on wear and damage behavior and optimal selection of wheel and rail under various material/hardness matching conditions. Ph.D. thesis, Southwest Jiaotong University, China, 2021 (in Chinese).
胡月. 不同材料/硬度匹配条件下轮轨磨损与损伤行为及优化选用研究. 博士学位论文, 西南交通大学, 2021.
35 Liu J H. Experimental research on rolling wear and contact fatigue damage behaviors of wheel/rail materials. Ph. D. Thesis, Southwest Jiaotong University, China, 2016 (in Chinese).
刘吉华. 轮轨材料滚动磨损和接触疲劳损伤行为的试验研究. 博士学位论文, 西南交通大学, 2016.
36 Huang Z W. Sichuan Building Materials, 2015, 41(5), 144 (in Chinese).
黄正玮. 四川建材, 2015, 41(5), 144.
37 Jiang S C. Harbin Railway Technology, 2010(3), 40 (in Chinese).
姜绍春. 哈尔滨铁道科技, 2010(3), 40.
38 Su H. Research on wear resistance of bainite rails for heavy haul railway. Master's Thesis, Beijing Jiaotong University, China, 2020 (in Chinese).
苏浩. 重载铁路用贝氏体钢轨耐磨性能研究. 硕士学位论文, 北京交通大学, 2020.
39 Zapata D, Jaramillo J, Toro A. Wear, 2011, 271, 393.
40 Lee K M, Polycarpou A A. Wear, 2005, 259, 391.
41 Liu J P, Li Y Q, Zhou Q Y, et al. Wear. 2019, 432, 202943.
42 Hasan S M, Chakrabarti D, Singh S B. Wear, 2018, 408, 151.
43 Viáfara C C, Castro M I, Vélez J M, et al. Wear, 2005, 259, 405.
44 Garnham J, Beynon J H. Wear, 1992, 157(1), 81.
45 Hardwick C, Lewis R, Stock R. Wear, 2017, 384, 50.
46 Liu Y. Theoretical and Experimental Study on Characteristic of Wheel-rail Contact and Damage Factors of Rail. Ph. D. Thesis, Lanzhou Jiaotong University, China, 2016 (in Chinese).
刘洋. 轮轨接触特性及钢轨损伤因素的理论及试验研究. 博士学位论文, 兰州交通大学, 2016.
47 Aglan H A, Fateh M. International Journal of Damage Mechanics, 2006, 15, 393.
48 Aglan H, Fateh M. Journal of Mechanics of Materials and Structures, 2007, 2, 335.
49 Królicka A, Lesiuk G, Radwański K, et al. International Journal of Fatigue, 2021, 149, 106280.
50 Onal O, Canadinc D, Sehitoglu H, et al. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35, 985.
51 Girsch G, Heyder R. In:7th World Congress on Railway Research (WCRR2006). Montreal, Canada, 2006.
52 Su X, Clayton P. Wear, 1996, 197, 137.
53 Seo J W, Jun H K, Kwon S J, et al. International Journal of Fatigue, 2016, 83, 184.
54 Zhong W. Experimental investigation of rail damnification mechanism. Ph. D. thesis, Southwest Jiaotong University, China, 2011 (in Chinese).
钟雯. 钢轨的损伤机理研究. 博士学位论文, 西南交通大学, 2011.
55 Aquib Anis M, Srivastava J P, Duhan N R, et al. IOP Conference Series:Materials Science and Engineering, 2018, 377(1), 012098.
56 Kapoor A, Fletcher D I, Franklin F J. Tribology Series, 2003, 41, 331.
57 Zhong W, Dong L, Wang Y, et al. Tribology, 2012, 32(1), 96 (in Chinese).
钟雯, 董霖, 王宇, 等. 摩擦学学报, 2012, 32(1), 96.
58 Zhang F C, Zheng C L, Lv B, et al. Engineering Failure Analysis, 2009, 16(5), 1461.
59 Wang H H, Wang W J, Han Z Y, et al. Wear, 2023, 522, 204721.
60 Zhang R J, Zheng C L, Chen C, et al. Wear, 2021, 482, 203978.
61 Fan Y S, Gui X L, Liu M, et al. Wear, 2022, 508, 204474.
62 Xing L X, Zou D Q, Du H Q. Railway Technological Innovation, 2016(2), 71 (in Chinese).
邢丽贤, 邹定强, 杜涵秋. 铁路技术创新, 2016(2), 71.
63 Chen X. China Metallurgy, 2012, 22(7), 28 (in Chinese).
陈雄. 中国冶金, 2012, 22(7), 28.
64 Yuan J, Deng J H, Gao H, et al. Iron Steel Vanadium Titanium, 2015, 36(1), 77 (in Chinese).
袁俊, 邓建辉, 高洪, 等. 钢铁钒钛, 2015, 36(1), 77.
65 Gao G H, Chen Q R, Guo R H, et al. Materials Reports, 2017, 31(20), 48 (in Chinese).
高古辉, 陈倩如, 郭浩冉, 等. 材料导报, 2017, 31(20), 48.
66 Goulas C, Mecozzi M G, Sietsma J. Metallurgical and Materials Transactions A. 2016, 47, 3077.
67 Gao B, Tan Z L, Liu Z N, et al. Engineering Failure Analysis, 2019, 100, 485.
68 Zhang R J, Zheng C L, Lv B, et al. International Journal of Fatigue, 2022, 159, 106795.
69 Zhu M, Xu G, Zhou M X, et al. Metals, 2018, 8(7), 484.
70 Wang K K, Tan Z L, Gao G H, et al. Materials Science and Enginee-ring:A, 2016, 662, 162.
71 Raudensky M, Horsky J, Hnizdil M P, et al. AIP Conference Procee-dings, American Institute of Physics, 2011, 11315(1), 563.
72 Gao G H, Liu R, Wang K, et al. Scripta Materialia, 2020, 184, 12.
73 Singh U P, Roy B, Jha S, et al. Materials Science and Technology, 2013, 17, 33.
74 Green M R, Rainforth W M, Frolish M F, et al. Wear, 2007, 263(1-6), 756.
75 Zhang R J, Zheng C L, Zhang P J, et al. Journal of Mechanical Engineering, 2023, 12, 253 (in Chinese).
张瑞杰, 郑春雷, 张佩君, 等. 机械工程学报, 2023, 12, 253.
76 Han Q Y, Zhang R J, Zheng C L, et. al. Journal of Hebei University of Technology, 2021, 50(6), 13 (in Chinese).
韩青阳, 张瑞杰, 郑春雷, 等. 河北工业大学学报, 2021, 50(6), 13.
77 Liu J P, Li Y Q, Jin J Y, et al. Materials Today Communications, 2020, 25, 101531.
78 Ma D S, Chi H X, Yong Q L, et al. Iron and Steel, 2010, 45(6), 79 (in Chinese).
马党参, 迟宏宵, 雍岐龙, 等. 钢铁, 2010, 45(6), 79.
79 Cheng J Q, Kang M K. Transaction of Materials and Heat Treatment, 2003(3), 8 (in Chinese).
程巨强, 康沫狂. 金属热处理学报, 2003(3), 8.
80 Zhu B B, Meng L, Zeng X Y, et al. Journal of Materials Processing Technology, 2023, 313, 117886.
81 Li Y Q, Liu J P, Zhang Y H, et al. Railway Engineering, 2020, 60(5), 112 (in Chinese).
李英奇, 刘佳朋, 张银花, 等. 铁道建筑, 2020, 60(5), 112.
82 Galas R, Omasta M. In:The latest methods of construction design, Springer International Publishing, Czech Republic, 2016, pp. 133.
83 Messaadi M, Oomen M, Kumar A. Tribology International, 2019, 14, 105857.
84 Lian Q L, Deng G Y, Zhu H T, et al. Friction, 2020, 8, 1178.
85 Gao G H, Liu M, Gui X L, et al. Acta Materialia, 2023, 250, 118887.
86 Song H Y. Research on corrosion wear properties and mechanism of bainite wheel and rail steel. Master's Thesis, Beijing Jiaotong University, China, 2020 (in Chinese).
宋宏宇. 贝氏体轮轨钢腐蚀磨损性能及机理研究. 硕士学位论文, 北京交通大学, 2020.
87 Du H Y, Ji L H. Advanced Materials of High Speed Railway, 2022, 1(4), 61 (in Chinese).
杜宏瑀, 季连海. 高速铁路新材料, 2022, 1(4), 61.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[5] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[6] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[7] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[8] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[9] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[10] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[11] 张洋洋, 张群力, 赵庆新, 吴凯, 常钧. 硫铝酸盐水泥水化产物-铝凝胶的研究进展[J]. 材料导报, 2024, 38(14): 23050153-9.
[12] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[13] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[14] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[15] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed