Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23080252-6    https://doi.org/10.11896/cldb.23080252
  金属与金属基复合材料 |
Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理
张而耕1, 刘江1, 蔡远飞2, 梁丹丹1,*, 陈强1,*, 周琼1, 黄彪1
1 上海应用技术大学上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418
2 同济大学材料科学与工程学院,上海 201804
Effect of Cr Doping on the Preferred Orientation and Frictional Properties of TiAlN Coatings
ZHANG Ergeng1, LIU Jiang1, CAI Yuanfei2, LIANG Dandan1,*, CHEN Qiang1,*, ZHOU Qiong1, HUANG Biao1
1 Shanghai Engineering Technology Research Center of Physical Vapor Deposition (PVD) Superhard Coatings and Equipment, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 6239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善TiAlN涂层力学性能和耐磨损性能,本工作利用阴极电弧技术在316 L不锈钢表面制备了不同Cr含量的TiAlCrN涂层,并探讨Cr掺杂对涂层的组织结构及力学性能的影响,揭示了涂层的摩擦磨损机理。结果表明:TiAlCrN涂层均呈立方结构且沿(200)、(111)、(220)、(311)晶面生长;随着Cr靶电流增加,涂层晶粒沿(111)晶面生长的织构系数增大,即Cr掺杂有利于涂层沿(111)晶面择优生长;TiAlCrN涂层的硬度和结合力均随Cr靶电流的升高而增大,Cr靶电流为150 A时,涂层表现出最大的硬度(25.50 GPa)和结合力(26.97 N);TiAlCrN涂层的摩擦系数及磨损率随Cr靶电流的增大而减小,Cr靶电流为150 A时,涂层表现出最低的摩擦系数(0.26)和磨损率(1.87× 10-5 mm3·N-1·m-1);TiAlCrN涂层的主要磨损机理为磨粒、氧化及黏着磨损;对于高Cr靶电流制备的TiAlCrN涂层,其在摩擦磨损过程中具备较好润滑性的CrOx优先于TiOx、AlOx形成,从而表现出低的磨损率;Cr掺杂能够有效改善TiAlN涂层在摩擦中的剥落现象,进一步提高涂层力学及摩擦磨损性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张而耕
刘江
蔡远飞
梁丹丹
陈强
周琼
黄彪
关键词:  TiAlCrN涂层  Cr掺杂  择优取向  力学性能  磨损    
Abstract: To improve the mechanical properties and wear resistance of TiAlN coatings, TiAlCrN coatings with various Cr contents were deposited on 316 L stainless steel via cathodic arc technology. The effect of Cr doping on the microstructure and mechanical properties of the coatings was investigated, and the wear mechanism of the coatings was also revealed. The results showed that TiAlCrN coatings had cubic structure and grew along the (200), (111), (220), and (311) crystal planes. Besides, the texture coefficient of the grains along the (111) crystal plane increased with the Cr target current, namely, Cr doping could promote the optimal growth of the coating along (111) crystal surface. As the Cr target current raised, the hardness and bonding force of TiAlCrN coatings were enhanced, but the coefficient of friction and wear rate of TiAlCrN coatings were decreased. The coating with a Cr target current of 150 A showed the maximum hardness (25.50 GPa) and bonding force (26.97 N), as well as the lowest friction coefficient (0.26) and wear rate (1.87× 10-5 mm3·N-1·m-1). The main wear mechanisms of TiAlCrN coatings were abrasive, oxidative, and adhesive wear. Meanwhile, TiAlCrN coatings with high Cr target current exhibited a relatively low wear rate, because CrOx with better lubrication properties, was preferentially formed over TiOx and AlOx during the friction wear process. Moreover, Cr doping could effectively ameliorate the spalling phenomenon, thus further strengthening the mechanical and friction wear performance of TiAlCrN coatings.
Key words:  TiAlCrN coating    Cr doping    preferred orientation    mechanical property    wear
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TG174  
基金资助: 上海市优秀技术带头人计划资助(22XD1434500);校协同创新项目(XTCX2022-24);引进人才科研经费(YJ2022-31);国家自然科学基金(51901138);上海市自然科学基金(20ZR1455700)
通讯作者:  * 梁丹丹,上海应用技术大学机械工程学院与上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心讲师、硕士研究生导师。2010年烟台大学材料科学与工程专业本科毕业,2013年中南大学材料加工工程专业硕士毕业,2018年同济大学材料学专业博士毕业,2021年深圳大学机电与控制工程学院博士后出站,2021年进入上海应用技术大学工作至今。目前主要从事物理气相沉积涂层、表面防护、亚稳态金属材料等方面的研究工作,已发表论文10余篇。 liang.d.d@163.com;陈强,上海应用技术大学上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心实验师。2013年、2017年分别获得南京理工大学和上海应用技术大学工学学士学位和硕士学位。目前主要研究领域为超硬纳微米PVD涂层、材料失效分析。 chenqiang2019@yeah.net   
作者简介:  张而耕,上海应用技术大学机械工程学院与上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心教授、硕士研究生导师。1995年阜新矿业学院热加工工艺及设备专业本科毕业,2000年沈阳建筑工程学院机械制造及其自动化专业硕士毕业,2003年华东理工大学化工过程机械专业博士毕业,2010年华东理工大学材料科学与工程学院博士后出站,2010年进入上海应用技术大学工作至今。目前主要从事物理气相沉积涂层、机械制造、材料失效分析等方面的研究工作。发表论文40余篇,获专利授权20余项。
引用本文:    
张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
ZHANG Ergeng, LIU Jiang, CAI Yuanfei, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Effect of Cr Doping on the Preferred Orientation and Frictional Properties of TiAlN Coatings. Materials Reports, 2024, 38(24): 23080252-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080252  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23080252
1 Tian B, Yue W, Wang C, et al. Applied Surface Science, 2015, 353, 1156.
2 Serag E, Caers B, Schuurmans P, et al. Surface and Coatings Technology, 2022, 441, 128542.
3 Zhang B, Zhu S, Wang Z, et al. Materials Letters, 2016, 169, 214.
4 Jung D H, Moon K I, Shin S Y, et al. Thin Solid Films, 2013, 546, 242.
5 Huang B, Zhou Q, An Q, et al. Surface and Coatings Technology, 2022, 429, 127945.
6 Tu J, Duan H, Xu J, et al. Science China Technological Sciences, 2014, 57(2), 345.
7 Yuan J, Yamamoto K, Covelli D, et al. Surface and Coatings Technology, 2016, 294, 54.
8 Beake B D, Isern L, Endrino J L, et al. Wear, 2019, 418-419, 102.
9 Fox-rabinovich G S, Yamomoto K, Veldhuis S C, et al. Surface and Coatings Technology, 2005, 200(5-6), 1804.
10 Xu Y X, Chen L, Yang B, et al. Surface and Coatings Technology, 2013, 235, 506.
11 Lin J, Zhang X, Ou Y, et al. Surface and Coatings Technology, 2015, 277, 58.
12 Fernandes F, Danek M, Polcar T, et al. Tribology International, 2018, 119, 345.
13 Gui B, Zhou H, Zheng J, et al. Ceramics International, 2021, 47(6), 8175.
14 Wang D, Lin S S, Liu L Y, et al. Journal of Central South University, 2022, 29(9), 3065.
15 Ward L, Pilkington A, Dowey S. Coatings, 2017, 7(4), 50.
16 Qu S J, Huang S Q, Guo C Q, et al. Vacuum, 2023, 209, 111796.
17 Oliveira J C, Ferreira F, Anders A, et al. Applied Surface Science, 2018, 433, 934.
18 Karabacak T. Journal of Nanophotonics, 2011, 5(1), 52501.
19 Ponte F, Sharma p, Figueiredo N M, et al. Materials (Basel), 2023, 16(6), 2315.
20 Ferreira F, Serra R, Cavaleiro A, et al. Thin Solid Films, 2016, 619, 250.
21 Ji C, Guo Q, Li J, et al. Journal of Alloys and Compounds, 2022, 891, 161996.
22 Huang B, Zhang E G, Du H M, et al. Surface and Coatings Technology, 2022, 449, 128887.
23 Danek M, Fernandes F, Cavaleiro A, et al. Surface and Coatings Technology, 2017, 313, 158.
24 Li Z, Munroe P, Jiang Z T, et al. Acta Materialia, 2012, 60(16), 5735.
25 Peng S, Xu J, Li Z, et al. Ceramics International, 2020, 46(3), 2743.
26 Wang W, Zhang G, Wang C, et al. Journal of Nuclear Materials, 2022, 563, 153660.
27 Ljungcrantz H, Odén M, Hultman L, et al. Journal of Applied Physics, 1996, 80(12), 6725.
28 Shetty A R, Karimi A, Cantoni M. Thin Solid Films, 2011, 519(13), 4262.
29 Chou W J, Yu G P, Huang J H. Surface and Coatings Technology, 2002, 149, 7.
30 Zhang Y F, Yan W Q, Chen L, et al. Surfaces and Interfaces, 2021, 25, 101156.
31 Sun Y, Huang Y, Fan H, et al. Journal of Non-Crystalline Solids, 2014, 406, 144.
32 Tian Y X, Xiao H Q, You C C, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(6), 1779.
33 Wu Q, Zheng H, Zhang Z, et al. Surface and Coatings Technology, 2021, 425, 127736.
34 Huang B, Liu L T, Du H M, et al. Vacuum, 2022, 204, 111336.
35 Hong H S. Tribology International, 2002, 313, 158.
36 Azushima A, Tanno Y, Iwata h, et al. Wear, 2008, 265(7-8), 1017.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed