Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080149-6    https://doi.org/10.11896/cldb.23080149
  金属与金属基复合材料 |
7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究
陈若瑜, 张秋哲, 赵峰, 宋滨娜*
苏州大学沙钢钢铁学院,江苏 苏州 215131
Fabrication, Friction and Wear Behavior of 7075 Al/10%SiC Composite Foam
CHEN Ruoyu, ZHANG Qiuzhe, ZHAO Feng, SONG Binna*
School of Iron and Steel, Soochow University, Suzhou 215131, Jiangsu, China
下载:  全 文 ( PDF ) ( 4371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用放电等离子烧结溶解法,添加10%(如无特别说明,均为体积分数)SiC和40%NaCl的造孔剂制备7075 Al/SiC复合泡沫材料,并对其球磨时间、烧结性能和摩擦磨损性能进行系统研究。结果表明:球磨时间为2 h、烧结温度为550 ℃、保温时间为10 min时可以制备出平均孔径约250 μm、SiC分布均匀的7075 Al/SiC复合泡沫材料。添加10%SiC后,显微硬度提高到132HV0.2。通过球-盘摩擦系统发现,7075 Al/SiC复合泡沫材料摩擦系数为0.31~0.34;与GCr15球对磨后,7075 Al/10%SiC复合泡沫材料的比磨损率为3.373×10-4 mm3/(N·m),7075 Al泡沫材料的比磨损率为0.993 4×10-3 mm3/(N·m);与Al2O3球对磨后,7075 Al/10%SiC复合泡沫材料的比磨损率为3.986×10-4 mm3/(N·m),7075 Al泡沫材料的比磨损率为2.12×10-3 mm3/(N·m),SiC的添加显著提高了材料的耐磨性,其磨损机制主要是黏着磨损和磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈若瑜
张秋哲
赵峰
宋滨娜
关键词:  7075 Al  碳化硅  放电等离子烧结-溶解法  干摩擦磨损    
Abstract: 7075 Al/SiC composites foam was manufactured by spark plasma sintering (SPS)-dissolution method with SiC volume fractions of 10vol% and NaCl volume fraction of 40%. The ball milling time, sintering property, pore structure, and tribological properties were systematically studied. The results show that 7075 Al/SiC composites foam with the average pore size 250 μm and uniform distribution of SiC can be obtained under 10 min sintering at 550 ℃ and 2 hours of ball milling. The form’s microhardness, with 10vol% SiC, increases to 132HV0.2. The friction coefficient of 7075 Al/SiC composites foam is 0.31—0.34 by Pin-on-Disk test. After wearing against GCr15 ball, the specific wear rate of the 7075 Al/10vol% SiC composite foam is 3.373×10-4 mm3/(N·m), while the specific wear rate of the 7075 Al foam is 0.993 4×10-3 mm3/(N·m). After wearing against Al2O3 ball, the specific wear rate of the 7075 Al/10vol% SiC composite foam is 3.986×10-4 mm3/(N·m), whereas the specific wear rate of the 7075 Al foam is 2.12×10-3 mm3/(N·m). The addition of SiC particles significantly improves the wear resistance, with the wear mechanisms mainly attributed to adhesive wear and abrasive wear.
Key words:  7075 Al    silicon carbide    spark plasma sintering-dissolution method    dry friction and wear
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TF821  
基金资助: 国家自然科学基金(52074186);耐热铝合金复合材料研究(H230089)
通讯作者:  * 宋滨娜,苏州大学沙钢钢铁学院副教授、硕士研究生导师。2012年东北大学有色金属冶金专业博士毕业,毕业后到苏州大学工作至今。目前主要从事3D打印、粉末冶金和多孔金属方面的研究。发表论文30余篇,包括Additive Manufacturing、Journal of Alloys and Compounds、Powder Metallurgy and Metal Ceramics等期刊,授权专利6项。songbinna@suda.edu.cn   
作者简介:  陈若瑜,2021年6月于山东理工大学大学获得工学学士学位。现为苏州大学沙钢钢铁学院硕士研究生,在宋滨娜副教授的指导下进行研究。目前主要研究领域为多孔金属材料。
引用本文:    
陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
CHEN Ruoyu, ZHANG Qiuzhe, ZHAO Feng, SONG Binna. Fabrication, Friction and Wear Behavior of 7075 Al/10%SiC Composite Foam. Materials Reports, 2024, 38(20): 23080149-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080149  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080149
1 Shang Y, Song H, Zhang W, et al. Journal of Materials Research and Technology, 2023, 24, 5971.
2 Han B Y, Gao X H, Du W B, et al. Materials Reports, 2023, 37(10), 161 (in Chinese).
韩冰源, 高祥涵, 杜文博, 等. 材料导报, 2023, 37(10), 161.
3 Yu H, Wang W, Liu J, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(5), 941.
4 Imran M, Khan A. Journal of Materials Research and Technology, 2019, 8(3), 3347.
5 Liu Y, Zheng Z, Mao M, et al. Journal of Alloys and Compounds, 2019, 808, 151727.
6 Surya M S, Gugulothu S K. Silicon, 2022, 14(5), 2023.
7 Bhowmik A, Biswas A. Silicon, 2022, 14(8), 3843.
8 Surya M S, Prasanthi G. Silicon, 2022, 14(3), 1083.
9 Wang Z G, Cai P, He Z F, et al. Hot Working Technology, 2014, 43 (22), 43 (in Chinese).
王展光, 蔡萍, 何正福, 等. 热加工工艺, 2014, 43(22), 43.
10 Huang D, Chen W P, Zhang S Y, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(1), 54.
11 Cree D, Pugh M. Wear, 2011, 272(1), 88.
12 Saberi Y, Zebarjad S M, Akbari G H. Journal of Alloys & Compounds, 2009, 484(1-2), 637.
13 Bor A, Jargalsaikhan B, Uranchimeg K, et al. Powder Technology, 2021, 394, 181.
14 Hassani A, Bagherpour E, Qods F. Journal of Alloys and Compounds, 2014, 591, 132.
15 Lakshmipathy J, Kulendran B. International Journal of Refractory Metals and Hard Materials, 2014, 46, 137.
16 Qi Y S, Wang Y B, Du L J, et al. Rare Metal Materials and Engineering, 2020, 49(11), 3741 (in Chinese).
綦育仕, 汪彦博, 杜兰君, 等. 稀有金属材料与工程, 2020, 49(11), 3741.
17 Jha N, Badkul A, Mondal D P, et al. Tribology International, 2011, 44(3), 220.
18 Fu L H, Zhou M, Gao Y A, et al. Applied Surface Science, 2021, 541, 148522.
19 Mondal D P, Das S, Jha N. Materials & Design, 2009, 30(7), 2563.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[3] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[4] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[5] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[6] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[7] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[8] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[9] 孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
[10] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[11] 冯凯萍, 吕冰海, 王帅, 赵天晨, 周兆忠. SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析[J]. 材料导报, 2022, 36(12): 21050197-9.
[12] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[13] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[14] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[15] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed