Preparation and Dielectric Energy Storage Properties of Core Shell Structure SiCNWs@SiO2/PVDF Composites
SU Yu1, WENG Ling1,2, WANG Xiaoming1, GUAN Lizhu1, ZHANG Xiaorui1,2
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China 2 Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China
Abstract: In order to accelerate the development of new energy electronic devices towards miniaturization and integration, it is very important to improve the properties of dielectric composites in electronic devices. The dielectric properties and energy storage properties of dielectric composites directly affect the quality of electronic devices. How to improve the dielectric properties and energy storage properties of dielectric composites has attracted extensive attention of researchers. Based on polyvinylidene fluoride (PVDF), silicon carbide nanowires (SiCNWs), core-shell silicon carbide nanowires@silica (SiCNWs@SiO2) as filler, a series of SiCNWs/PVDF binary composites and SiCNWs@SiO2/PVDF composites were prepared by solution blending phase conversion method and hot pressing process. The effects of surface modification, core-shell structure on the microstructure, and the corresponding macro dielectric properties and energy storage properties of PVDF matrix composites were investigated. The experimental results show that: SiCNWs were modified by silane coupling agents KH550,typical core-shell structures were prepared by one-step thermal oxidation process SiCNWs@SiO2 nanowires, the thickness of SiO2 shell increases with the extension of thermal oxidation time, when the thermal oxidation time is 10 h, the thickness of SiO2 shell is 6.5 nm; PVDF matrix composites were synthetized by phase conversion method, and all nano fillers were blended with PVDF matrix; With the doping amount of SiCNWs increasing, the SiCNWs/PVDF binary composite appears obvious agglomeration. The addition of SiCNWs@SiO2 can greatly improved the dispersion of fillers in polymer matrix. Compared with pure PVDF, the introduction of SiCNWs greatly enhances the dielectric constant of the composites. However, its dielectric loss and conductivity are still large. The core-shell structure can effectively reduce the dielectric loss and conductivity while maintaining high dielectric constant, and significantly improve the breakdown strength of the composites. The energy storage density of pure PVDF and series SiCNWs/PVDF binary composites is low, when the doping amount of nano filler is 25wt%, the introduction of core shell structure SiCNWs@SiO2 nanowires with thermal oxidation time of 10 h, 25wt%SiCNWs@SiO2/PVDF(10 h) composite under ultimate electric field strength, the maximum discharge energy densities obtained are 0.111 J/cm3, the discharge efficiencies are 53.06%, which effectively improves the energy storage performance of the composite.
1 Dang Z M, Yuan J K, Zha J W, et al. Progress in Materials Science, 2011, 57(4),660. 2 Gui X, Wang K, Cao A, et al. Journal of Nanoscience and Nanotechnology, 2010, 10(3),1808. 3 Zhu Y K. Preparation and properties of polyvinylidene fluoride polymer dielectrics and new multilayer dielectric composites. Ph.D. Thesis, Shanghai Jiaotong University, China, 2020 (in Chinese). 朱荧科. 聚偏氟乙烯基聚合物电介质及新型多层结构介电复合材料的制备与性能研究. 博士学位论文, 上海交通大学, 2020. 4 Qi H, Zuo R, Xie A, et al. Journal of the European Ceramic Society, 2019, 39(13), 3703. 5 Kim H M, Kim K, Lee C Y, et al. Applied Physics Letters, 2004, 84(4), 589. 6 Wang L S. Study on dielectric properties of polyvinylidene fluoride composites. Master's Thesis, Yanshan University, China, 2012 (in Chinese). 汪令生. 聚偏氟乙烯复合材料介电性能研究. 硕士学位论文, 燕山大学, 2012. 7 Choi S H, Kim I D, Hong J M, et al. Materials Letters, 2007, 61(11-12),2478. 8 Li M. Preparation of graphene composites and their dielectric and thermal conductivity.Master's Thesis, Shanghai Jiaotong University, China, 2013 (in Chinese). 李密. 石墨烯复合材料的制备及其介电性能与导热性能的研究. 硕士学位论文, 上海交通大学, 2013. 9 Kuang X W. Study on PVDF based dielectric composite membrane. Ph.D. Thesis, Beijing University of Chemical Technology, China, 2013(in Chinese). 匡锡文. PVDF 基介电复合膜的研究. 博士学位论文, 北京化工大学, 2013. 10 Zhu Y, Jiang P, Zhang Z, et al. Chinese Chemical Letters, 2017, 28(11),2027. 11 Dang Z M, Yuan J K, Yao S H, et al. Advanced Materials, 2013, 25(44), 6334. 12 Zhu L. The Journal of Physical Chemistry Letters, 2014, 5(21),3677. 13 Zhu L, Wang Q. Macromolecules, 2012, 45(7),2937. 14 Pan Z, Yao L, Zhai J, et al. Advanced Materials, 2018, 30 (17), 1705662. 15 Khan M N, Jelani N, Li C, et al. Ceramics International, 2017, 43(4),3923. 16 Lam K S, Wong Y W, Tai L S, et al. Journal of Applied Physics, 2004, 96(7),3896. 17 Xu J, Lei X P, Han D, et al. Silicate Bulletin, 2018, 37(9),3028 (in Chinese). 许静, 雷西萍, 韩丁, 等. 硅酸盐通报, 2018, 37(9),3028. 18 Xu J. Preparation and dielectric properties of organic modified SiC whis-ker/PVDF composite films. Master's Thesis, Xi'an University of Architecture and Technology, China, 2018 (in Chinese). 许静. 有机改性SiC晶须/PVDF复合薄膜的制备及介电性能研究. 硕士学位论文, 西安建筑科技大学, 2018. 19 Wang L F, Zhang J W, Li G, et al. Journal of Composite Materials, 2014(4),880 (in Chinese). 王龙飞, 张俊伟, 李光, 等. 复合材料学报, 2014(4),880. 20 Azizi A, Gadinski M R, Li Q, et al. Advanced Materials (Deerfield Beach, Fla), 2017, 29(35),n/a. 21 Yang Y, Sun H, Yin D, et al. Journal of Materials Chemistry A, 2015, 3(9),4916. 22 Wang Z, Wang T, Fang M, et al. Composites Science and Technology, 2017, 146(7),139. 23 Wang Q, Zhu L. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(20),1421. 24 Vaklev N L, Muller R, Muir B V O, et al. Advanced Materials Interfaces, 2014, 1(3), 1. 25 Niu Y M, Liu H F. Journal of Northeast Petroleum University, 2018, 42(3), 102 (in Chinese). 牛艺蒙, 刘海峰. 东北石油大学学报, 2018, 42(3),102. 26 Zhou W Y, Xu L, Zhang F, et al. Composites Part A. Applied Science and Manufacturing, DOI:10.1016/j.compositesa.2020.106021. 27 He D, Yao W, Song S, et al. ACS Appl Mater Interfaces, 2017, 9(51),44839. 28 Bi J Y, Gu Y Z, Zhang Z C, et al. Materials & Design, 2016, 89, 933. 29 Shen Y, Lin Y, Nan C W. Advanced Functional Materials, 2010, 17(14), 2405. 30 Li X K, Liu L, Shen S D, et al. Silicate Bulletin, 2000(5),23 (in Chinese). 李轩科, 刘朗, 沈士德, 等. 硅酸盐通报, 2000(5), 23. 31 Zhang Z, Gu Y, Bi J, et al. Composites, Part A. Applied Science and Manufacturing, 2016, 85,172. 32 Fu L, Abed M, Li K. Journal of Membrane Science, 2010, 366(1),97. 33 Zhao X J. Dielectric energy storage properties and relaxation behavior of PVDF based organic composite films. Ph.D. Thesis, Yanshan University, China, 2016 (in Chinese). 赵小佳. PVDF基有机复合薄膜的介电储能性能及其松弛行为研究. 博士学位论文, 燕山大学, 2016. 34 Wu E Y, Sun J, Lai W. Electron Devices IEEE Transactions on, 2002, 49(12),2141. 35 Huang X, Xie L, Hu Z, et al. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(2),375. 36 Han Y X, Shi X T, Yang X T, et al. Composites Science and Technology, 2020, 187(c),107944. 37 Liu S T. Preparation of flake nano powder and its application in PVDF based dielectric composites, Master's Thesis, Beijing University of Che-mical Technology, China, 2020 (in Chinese). 刘苏涛. 片状纳米粉体制备及其在PVDF基介电复合材料中应用研究. 硕士学位论文, 北京化工大学, 2020.