Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 22010127-11    https://doi.org/10.11896/cldb.22010127
  高分子与聚合物基复合材料 |
核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性
苏宇1, 翁凌1,2, 王小明1, 关丽珠1, 张笑瑞1,2
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
2 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150040
Preparation and Dielectric Energy Storage Properties of Core Shell Structure SiCNWs@SiO2/PVDF Composites
SU Yu1, WENG Ling1,2, WANG Xiaoming1, GUAN Lizhu1, ZHANG Xiaorui1,2
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China
下载:  全 文 ( PDF ) ( 14894KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了加速新能源电子器件向微型化和集成化的方向发展,提高电子器件内部介电复合材料的性能至为重要,介电复合材料的介电性能和储能性能直接影响电子器件的质量,如何提高介电复合材料的介电性能和储能性能等引起了研究者们的广泛关注。
以聚偏氟乙烯(PVDF)为基体,碳化硅纳米线(SiCNWs)和核壳结构碳化硅纳米线@二氧化硅(SiCNWs@SiO2)为填料,通过溶液共混相转换法及热压工艺制备出一系列的SiCNWs/PVDF二元复合材料和SiCNWs@SiO2/PVDF复合材料。探究介电纳米填料的表面修饰对PVDF基复合材料的微观结构、宏观介电性能和储能性能等的影响。
实验结果表明,硅烷偶联剂KH550成功改性SiCNWs;通过一步法热氧化工艺成功制备出具有典型核壳结构的SiCNWs@SiO2纳米线,SiO2壳层的厚度随着SiCNWs热氧化时间的延长而增大,当SiCNWs热氧化时间为10 h,SiO2壳层的厚度为6.5 nm;采用相转换法和热压处理成功制备一系列的SiCNWs/PVDF二元复合材料和SiCNWs@SiO2/PVDF复合材料,SiCNWs和SiCNWs@SiO2与PVDF基体成功复合;当SiCNWs掺杂量较大时,SiCNWs/PVDF二元复合材料出现明显的团聚现象,核壳结构SiCNWs@SiO2纳米线的引入,有效地提升纳米填料在聚合物基体中的分散性。
对比纯PVDF,SiCNWs的引入大幅度提高了复合材料的介电常数,但其介电损耗和电导率较大。将核壳结构SiCNWs@SiO2纳米线嵌入PVDF基体中,使复合材料在保持高介电常数的同时不同程度地降低了介电损耗和电导率,同时复合材料的击穿强度也有较大的提升。25%(质量分数)SiCNWs@SiO2/PVDF(10 h)复合材料在极限电场强度下获得的最大放电能量密度分别为0.111 J/cm3,获得的放电效率分别为53.06%,有效提升了复合材料的储能性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏宇
翁凌
王小明
关丽珠
张笑瑞
关键词:  聚偏氟乙烯  碳化硅纳米线  核壳结构  介电性能  储能密度    
Abstract: In order to accelerate the development of new energy electronic devices towards miniaturization and integration, it is very important to improve the properties of dielectric composites in electronic devices. The dielectric properties and energy storage properties of dielectric composites directly affect the quality of electronic devices. How to improve the dielectric properties and energy storage properties of dielectric composites has attracted extensive attention of researchers. Based on polyvinylidene fluoride (PVDF), silicon carbide nanowires (SiCNWs), core-shell silicon carbide nanowires@silica (SiCNWs@SiO2) as filler, a series of SiCNWs/PVDF binary composites and SiCNWs@SiO2/PVDF composites were prepared by solution blending phase conversion method and hot pressing process. The effects of surface modification, core-shell structure on the microstructure, and the corresponding macro dielectric properties and energy storage properties of PVDF matrix composites were investigated. The experimental results show that: SiCNWs were modified by silane coupling agents KH550,typical core-shell structures were prepared by one-step thermal oxidation process SiCNWs@SiO2 nanowires, the thickness of SiO2 shell increases with the extension of thermal oxidation time, when the thermal oxidation time is 10 h, the thickness of SiO2 shell is 6.5 nm; PVDF matrix composites were synthetized by phase conversion method, and all nano fillers were blended with PVDF matrix; With the doping amount of SiCNWs increasing, the SiCNWs/PVDF binary composite appears obvious agglomeration. The addition of SiCNWs@SiO2 can greatly improved the dispersion of fillers in polymer matrix. Compared with pure PVDF, the introduction of SiCNWs greatly enhances the dielectric constant of the composites. However, its dielectric loss and conductivity are still large. The core-shell structure can effectively reduce the dielectric loss and conductivity while maintaining high dielectric constant, and significantly improve the breakdown strength of the composites. The energy storage density of pure PVDF and series SiCNWs/PVDF binary composites is low, when the doping amount of nano filler is 25wt%, the introduction of core shell structure SiCNWs@SiO2 nanowires with thermal oxidation time of 10 h, 25wt%SiCNWs@SiO2/PVDF(10 h) composite under ultimate electric field strength, the maximum discharge energy densities obtained are 0.111 J/cm3, the discharge efficiencies are 53.06%, which effectively improves the energy storage performance of the composite.
Key words:  PVDF    silicon carbide nanowires    core-shell structure    dielectric properties    energy storage density
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51677045);哈尔滨理工大学“理工英才”优秀青年基金(2019-KYYWF-0206)
通讯作者:  翁凌,通信作者,哈尔滨理工大学材料科学与化学工程学院副院长、教授、博士研究生导师。中国电工学会绝缘材料与绝缘技术委员会委员。主持及参与国家自然科学基金面上项目、黑龙江省自然科学基金重点及面上项目、国家科技支撑计划项目(子课题)、广东省产学研合作研究项目等10余项,在国内外学术期刊和会义发表论文50余篇,SCI收录30余篇,参编专著1部。担任Compos.Sci.Technol.、RSC Advances等10余种SCI期刊审稿专家,国家自然科学基金评审专家,中国复合材料学会高级会员。   
作者简介:  苏宇,2019年7月毕业于哈尔滨理工大学材料科学与工程学院,获得工学学士学位。现为哈尔滨理工大学材料科学与化学工程学院硕士研究生,在翁凌教授的指导下进行研究。目前主要研究领域为聚合物基介电功能复合材料。
引用本文:    
苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
SU Yu, WENG Ling, WANG Xiaoming, GUAN Lizhu, ZHANG Xiaorui. Preparation and Dielectric Energy Storage Properties of Core Shell Structure SiCNWs@SiO2/PVDF Composites. Materials Reports, 2023, 37(11): 22010127-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010127  或          http://www.mater-rep.com/CN/Y2023/V37/I11/22010127
1 Dang Z M, Yuan J K, Zha J W, et al. Progress in Materials Science, 2011, 57(4),660.
2 Gui X, Wang K, Cao A, et al. Journal of Nanoscience and Nanotechnology, 2010, 10(3),1808.
3 Zhu Y K. Preparation and properties of polyvinylidene fluoride polymer dielectrics and new multilayer dielectric composites. Ph.D. Thesis, Shanghai Jiaotong University, China, 2020 (in Chinese).
朱荧科. 聚偏氟乙烯基聚合物电介质及新型多层结构介电复合材料的制备与性能研究. 博士学位论文, 上海交通大学, 2020.
4 Qi H, Zuo R, Xie A, et al. Journal of the European Ceramic Society, 2019, 39(13), 3703.
5 Kim H M, Kim K, Lee C Y, et al. Applied Physics Letters, 2004, 84(4), 589.
6 Wang L S. Study on dielectric properties of polyvinylidene fluoride composites. Master's Thesis, Yanshan University, China, 2012 (in Chinese).
汪令生. 聚偏氟乙烯复合材料介电性能研究. 硕士学位论文, 燕山大学, 2012.
7 Choi S H, Kim I D, Hong J M, et al. Materials Letters, 2007, 61(11-12),2478.
8 Li M. Preparation of graphene composites and their dielectric and thermal conductivity.Master's Thesis, Shanghai Jiaotong University, China, 2013 (in Chinese).
李密. 石墨烯复合材料的制备及其介电性能与导热性能的研究. 硕士学位论文, 上海交通大学, 2013.
9 Kuang X W. Study on PVDF based dielectric composite membrane. Ph.D. Thesis, Beijing University of Chemical Technology, China, 2013(in Chinese).
匡锡文. PVDF 基介电复合膜的研究. 博士学位论文, 北京化工大学, 2013.
10 Zhu Y, Jiang P, Zhang Z, et al. Chinese Chemical Letters, 2017, 28(11),2027.
11 Dang Z M, Yuan J K, Yao S H, et al. Advanced Materials, 2013, 25(44), 6334.
12 Zhu L. The Journal of Physical Chemistry Letters, 2014, 5(21),3677.
13 Zhu L, Wang Q. Macromolecules, 2012, 45(7),2937.
14 Pan Z, Yao L, Zhai J, et al. Advanced Materials, 2018, 30 (17), 1705662.
15 Khan M N, Jelani N, Li C, et al. Ceramics International, 2017, 43(4),3923.
16 Lam K S, Wong Y W, Tai L S, et al. Journal of Applied Physics, 2004, 96(7),3896.
17 Xu J, Lei X P, Han D, et al. Silicate Bulletin, 2018, 37(9),3028 (in Chinese).
许静, 雷西萍, 韩丁, 等. 硅酸盐通报, 2018, 37(9),3028.
18 Xu J. Preparation and dielectric properties of organic modified SiC whis-ker/PVDF composite films. Master's Thesis, Xi'an University of Architecture and Technology, China, 2018 (in Chinese).
许静. 有机改性SiC晶须/PVDF复合薄膜的制备及介电性能研究. 硕士学位论文, 西安建筑科技大学, 2018.
19 Wang L F, Zhang J W, Li G, et al. Journal of Composite Materials, 2014(4),880 (in Chinese).
王龙飞, 张俊伟, 李光, 等. 复合材料学报, 2014(4),880.
20 Azizi A, Gadinski M R, Li Q, et al. Advanced Materials (Deerfield Beach, Fla), 2017, 29(35),n/a.
21 Yang Y, Sun H, Yin D, et al. Journal of Materials Chemistry A, 2015, 3(9),4916.
22 Wang Z, Wang T, Fang M, et al. Composites Science and Technology, 2017, 146(7),139.
23 Wang Q, Zhu L. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(20),1421.
24 Vaklev N L, Muller R, Muir B V O, et al. Advanced Materials Interfaces, 2014, 1(3), 1.
25 Niu Y M, Liu H F. Journal of Northeast Petroleum University, 2018, 42(3), 102 (in Chinese).
牛艺蒙, 刘海峰. 东北石油大学学报, 2018, 42(3),102.
26 Zhou W Y, Xu L, Zhang F, et al. Composites Part A. Applied Science and Manufacturing, DOI:10.1016/j.compositesa.2020.106021.
27 He D, Yao W, Song S, et al. ACS Appl Mater Interfaces, 2017, 9(51),44839.
28 Bi J Y, Gu Y Z, Zhang Z C, et al. Materials & Design, 2016, 89, 933.
29 Shen Y, Lin Y, Nan C W. Advanced Functional Materials, 2010, 17(14), 2405.
30 Li X K, Liu L, Shen S D, et al. Silicate Bulletin, 2000(5),23 (in Chinese).
李轩科, 刘朗, 沈士德, 等. 硅酸盐通报, 2000(5), 23.
31 Zhang Z, Gu Y, Bi J, et al. Composites, Part A. Applied Science and Manufacturing, 2016, 85,172.
32 Fu L, Abed M, Li K. Journal of Membrane Science, 2010, 366(1),97.
33 Zhao X J. Dielectric energy storage properties and relaxation behavior of PVDF based organic composite films. Ph.D. Thesis, Yanshan University, China, 2016 (in Chinese).
赵小佳. PVDF基有机复合薄膜的介电储能性能及其松弛行为研究. 博士学位论文, 燕山大学, 2016.
34 Wu E Y, Sun J, Lai W. Electron Devices IEEE Transactions on, 2002, 49(12),2141.
35 Huang X, Xie L, Hu Z, et al. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(2),375.
36 Han Y X, Shi X T, Yang X T, et al. Composites Science and Technology, 2020, 187(c),107944.
37 Liu S T. Preparation of flake nano powder and its application in PVDF based dielectric composites, Master's Thesis, Beijing University of Che-mical Technology, China, 2020 (in Chinese).
刘苏涛. 片状纳米粉体制备及其在PVDF基介电复合材料中应用研究. 硕士学位论文, 北京化工大学, 2020.
[1] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[2] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[3] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[4] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[5] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[6] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[7] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[8] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[9] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[10] 张晓蝶, 丁井鲜, 黄建建, 王放, 马丽, 郭东杰. PEDOT夹心PVDF多孔膜的电驱动性能研究[J]. 材料导报, 2022, 36(10): 21010222-6.
[11] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[12] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[13] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[14] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[15] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed