Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20080247-7    https://doi.org/10.11896/cldb.20080247
  高分子与聚合物基复合材料 |
利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展
姬旭敏1, 孙滨洲1, 李聪1, 胡澎浩1,2,*
1 北京科技大学新材料技术研究院,北京 100083
2 佛山(华南)新材料研究院,新能源复合材料研究中心,广东 佛山 528200
Research Progress of Polymer Based Composites with Multilayer Film to Improve the Dielectric Energy Storage Density
JI Xumin1, SUN Binzhou1, LI Cong1, HU Penghao1,2,*
1 Institute for Advanced Materials & Technology, University of Science & Technology Beijing, Beijing 100083, China
2 Research Center for New Energy Composite Materials, Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
下载:  全 文 ( PDF ) ( 4826KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 静电电容器是能够储存电荷的元件,由两端的极板和中间的电介质材料组成,其能够储存的能量密度取决于电介质材料的介电性能。聚合物电介质材料由于超高的击穿强度、易加工且成本低廉已经被广泛应用,但较低的介电常数限制了其能量密度的提升。向传统的单层聚合物薄膜中引入高介电常数的纳米填料能够实现介电常数的提升,但会显著降低聚合物的耐压性能。
近几年来,利用共挤出薄膜技术和静电纺丝等方法将聚合物薄膜加工成多层薄膜的工作取得了较大的进展,多层薄膜可以一定程度上解决复合薄膜介电常数和击穿场强的倒置关系的矛盾。基于相场模拟的结果证明了多层薄膜的优异性能,其在维持聚合物本身的高耐压性能的同时,还实现了介电常数的提升,改善了聚合物薄膜的可释放能量密度,相比于商用双向拉伸聚丙烯(BOPP)薄膜,多层薄膜的能量密度提升了200%甚至更高。
本文总结了近几年通过设计多层结构提高复合电介质能量密度的研究进展,并重点探讨了复合材料中层间界面的结构设计及其对阻碍载流子传输的积极作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姬旭敏
孙滨洲
李聪
胡澎浩
关键词:  聚合物纳米复合材料  多层薄膜  介电  储能密度  界面    
Abstract: Electrostatic capacitor is a component that can store electric charges. It is composed of electrode at both ends and dielectric material in the middle. The energy density that can be stored depends on the dielectric properties of the intermediate dielectric material. Polymer dielectric materials have been widely used due to their ultra-high breakdown strength, easy processing and low cost, but their lower dielectric constant limits the increase in energy density. The introduction of high-permittivity nanofillers into traditional single-layer polymer films can achieve an increase in permittivity, but will significantly deteriorate the breakdown strength of the polymer.
In recent years, using the co-extrusion film technology and electrospinning methods to process polymer films into multilayer films has made great progress, which can solve the inverted relationship between dielectric constant and breakdown field strength to a certain extent. The results based on the phase field simulation also proved the excellent performance of the multilayer film. While maintaining the high breakdown strength of the polymer itself, it also achieved an increase in the dielectric constant and improved the discharged energy density of the polymer film. Compared with the energy density of commercial biaxially oriented polypropylene (BOPP) film, that of newly developed materials has increased by 200% or even higher.
This paper summarizes the research progress of improving the energy density of composite dielectrics through the design of multilayer structures in recent years, and focuses on the structural design of the interlayer interface in composite materials and the positive effect on hindering carrier transport.
Key words:  polymer nanocomposites    multilayer film    dielectric    energy storage density    interface
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TM215.3  
基金资助: 广东省基础与应用基础研究研究基金(2020B1515120074);北京科技大学青年教师学科交叉研究项目(中央高校基本科研业务费专项资金)(FRF-IDRY-19-003)
通讯作者:  huph@ustb.edu.cn   
作者简介:  姬旭敏,2018年7月毕业于中北大学,获得工学学士学位。现为北京科技大学新材料技术研究院硕士研究生,在导师胡澎浩的指导下进行研究。目前主要研究方向为聚合物基纳米复合材料的介电储能研究。
胡澎浩,北京科技大学新材料技术研究院副研究员、硕士研究生导师。2006年7月本科毕业于北京航空航天大学材料学院,2011年6月在北京科技大学冶金物理化学专业取得博士学位,2011—2013年在清华大学材料学院进行博士后研究工作。主要从事聚合物基复合材料的介电储能、柔性压电、高频低损的相关研究工作。近年来,在相关领域发表论文50余篇,包括Journal of the American Chemical Society、 Advanced Functional Materials、 Journal of Materials Chemistry A、 Composites Science and Technology等。
引用本文:    
姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
JI Xumin, SUN Binzhou, LI Cong, HU Penghao. Research Progress of Polymer Based Composites with Multilayer Film to Improve the Dielectric Energy Storage Density. Materials Reports, 2022, 36(9): 20080247-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080247  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20080247
1 Chen C, Xie Y C, Liu J J, et al. Composites Science and Technology, 2020, 188, 107968.
2 Li L, Cheng J S, Cheng Y Y, et al. Journal of Materials Chemistry A, 2020, 8(27), 13659.
3 Wang P J, Zhou D, Guo H H, et al. Journal of Materials Chemistry A, 2020, 8(22), 11124.
4 Lu X, Zou X W, Shen J L, et al. Nano Energy, 2020, 70, 104551.
5 Luo S B, Yu J Y, Yu S H, et al. Advanced Energy Materials, 2019, 9(5), 1803204.
6 Zhang T, Guo M F, Jiang J Y, et al. RSC Advances, 2019, 9(62), 35990.
7 Ma Y P, Luo H, Zhou X F, et al. Nanoscale, 2020, 12(15), 8230.
8 Guo M F, Jiang J Y, Shen Z H, et al. Materials Today, 2019, 29, 49.
9 Pan Z B, Xing S, Jiang H T, et al. Journal of Materials Chemistry A, 2019, 7(25), 15347.
10 Pan Z B, Yao L M, Liu J J, et al. Journal of Materials Chemistry C, 2019, 7(2), 405.
11 Zhang Y Y, Liu X R, Yu J Y, et al. Composites Science and Technology, 2019, 184, 107838.
12 Zhang Y, Zhang C F, Feng Y, et al. Nano Energy, 2019, 56, 138.
13 Jiang B B, Iocozzia J, Zhao L, et al. Chemical Society Reviews, 2019, 48(4), 1194.
14 Tian F Q, Yang C, He L J, et al. Transactions of China Electrotechnical Society, 2011, 26(3), 1(in Chinese).
田付强, 杨春, 何丽娟, 等. 电工技术学报, 2011, 26(3), 1.
15 Yang R X, Chen H, Wang X W, et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1050(in Chinese).
杨瑞宵, 陈昊, 王相文, 等. 复合材料学报, 2018, 35(5), 1050.
16 Chen X Y, Yin X Q. Insulating Materials, 2019,52(3), 7(in Chinese).
程相英, 尹训茜. 绝缘材料, 2019, 52(3), 7.
17 Pan Z B, Yao L M, Zhai J W, et al. Journal of Materials Chemistry A, 2016, 4(34), 13259.
18 Wang G Y, Huang X Y, Jiang P K. Scientific Reports, 2017, 7, 43071.
19 Liu S H, Xue S X, Xiu S M, et al. Scientific Reports, 2016, 6, 26198.
20 Bi K, Bi M H, Hao Y N, et al. Nano Energy, 2018, 51, 513.
21 Zhang L Y, Wang Y, Xu M Y, et al. ACS Applied Energy Materials, 2019, 2(8), 5945.
22 Bao Z W, Hou C M, Shen Z H, et al. Advanced Materials, 2020, 32(25), 1907227.
23 Prateek, Thakur V K, Gupta R K. Chemical Reviews, 2016, 116(7), 4260.
24 Baer E, Zhu L. Macromolecules, 2017, 50(6), 2239.
25 Tan D Q. Journal of Applied Polymer Science, 2020, 137(33), 49379.
26 Jiang J Y, Shen Z H, Qian J F, et al. Energy Storage Materials, 2019, 18, 213.
27 Li Y C, Fu X L, Zhan Y H, et al. Materials Reports A:Review Papers, 2017,31(8), 18(in Chinese).
李玉超, 付雪连, 战艳虎, 等. 材料导报:综述篇,2017,31(8),18.
28 Yang T. Fabrication and dielectric properties of barium titanate/polyvinylidene fluoride multi-layered composites. Master's Thesis, Beijing University of Chemical Technology, China, 2009(in Chinese).
杨泰. 钛酸钡/聚偏氟乙烯多层复合材料的制备与介电性能研究. 硕士学位论文, 北京化工大学, 2009.
29 Lin Y, Zhang Y J, Sun C,et al. Ceramics Interntional, 2020, 46(10), 15270.
30 Lin Y, Sun C, Zhan S L, et al. Advanced Materials Interfaces, 2020, 7(9), 2000033.
31 Lin Y, Sun C, Zhan S L, et al. Composites Science and Technology, 2020, 199, 108368.
32 Zha J W, Zheng M S. High Voltage Engineering, 2017, 43(7), 2194(in Chinese).
查俊伟, 郑明胜. 高电压技术, 2017, 43(7), 2194.
33 Pan Z B, Liu B H, Zhai J W, et al. Nano Energy, 2017, 40, 587.
34 Liu F H, Li Q, Cui J, et al. Advanced Functional Materials, 2017, 27(20), 1606292.
35 Wang Y F, Wang L X, Yuan Q B, et al. Nano Energy, 2018, 44, 364.
36 Shen Z H, Wang J J, Lin Y H, et al. Advanced Materials, 2018, 30(2), 1704380.
37 Yin K Z, Zhou Z, Schuele D E, et al. ACS Applied Materials & Interfaces, 2016, 8(21), 13555.
38 Tseng J K, Tang S D, Zhou Z, et al. Polymer, 2014, 55(1), 8.
39 Chen X Y, Tseng K J, Treufeld I, et al. Journal of Materials Chemistry C, 2017, 5(39), 10417.
40 Mackey M, Schuele D E, Zhu L, et al. Macromolecules, 2012, 45(4), 1954.
41 Jiang J Y, Shen Z H, Qian J F, et al. Nano Energy, 2019,62, 220.
42 Jiang J Y, Shen Z H, Cai X K, et al. Advanced Energy Materials, 2019, 9(15), 1803411.
43 Zhang X, Jiang J Y, Shen Z H, et al. Advanced Materials, 2018, 30(16), 1707269.
44 Jiang Y D, Zhang X, Shen Z H, et al. Advanced Functional Materials, 2019, 30(4), 1906112.
45 Wang Y F, Cui J, Yuan Q B, et al. Advanced Materials, 2015, 27(42), 6658.
46 Hu P H, Shen Y, Guan Y H, et al. Advanced Functional Materials, 2014, 24(21), 3172.
47 Wang Y F, Cui J, Wang L X, et al. Journal of Materials Chemistry A, 2017, 5(9), 4710.
48 Zhu Y K, Zhu Y J, Huang X Y, et al. Advanced Energy Materials, 2019, 9(36), 190126.
49 Li Z Y, Liu F H, Li H, et al. Ceramics International, 2019, 45(7), 8216.
50 Wang Y F, Li Y, Wang L X, et al. Energy Storage Materials, 2019, 24, 626.
51 Zhang Y B, Yang H B, Dang Z E, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 22137.
52 Zhang T, Dan Z K, Shen Z H, et al. RSC Advances,2020,10(10),5886.
53 Yin K Z, Zhang J W, Li Z P, et al. Journal of Applied Polymer Science, 2019, 136(20), 47535.
[1] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[2] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[3] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[4] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[5] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[6] 孙伟, 张淑婷, 杜开平, 欧阳佩旋, 杨谨赫. 基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究[J]. 材料导报, 2022, 36(7): 21060140-6.
[7] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[8] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[9] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[10] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[11] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[12] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[13] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[14] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[15] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed