Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21010025-12    https://doi.org/10.11896/cldb.21010025
  金属与金属基复合材料 |
液/固晶面润湿性实验与模拟研究方法
郑棋文, 范同祥*
上海交通大学金属基复合材料国家重点实验室,上海 200240
Experimental and Simulation Methods on Liquid/Solid Interface Wettability Considering Crystal Surfaces
ZHENG Qiwen, FAN Tongxiang*
State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240, China
下载:  全 文 ( PDF ) ( 4787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液/固晶面润湿问题在钎焊、金属基复合材料液相法制备等领域都有着重要研究意义。研究发现,固体晶面结构会显著影响液/固界面润湿性。研究液体在固体特定晶面上的润湿行为,对于深入理解润湿过程及更有针对性地改善材料液/固界面润湿性具有重要意义。
目前研究液/固晶面润湿性的实验测量方法主要为座滴法,然而该方法针对强弱界面结合体系的测量结果对实验条件均较敏感,且受限于特定晶面基板是否容易制备,因此仍不能在液/固晶面润湿性的研究中推广采用。微观模拟方法不仅可以建立不同晶面的固体结构,同时有效避免了实验条件的影响,故对预测实验结果具有独特的优势。
用于液/固晶面润湿性研究的微观尺度模拟方法包括分子动力学、第一性原理计算以及Ab-initio分子动力学。目前分子动力学方法主要应用于强界面结合的金属/金属体系,通过模拟实际物理条件下的熔化和润湿过程,可研究润湿性、界面反应、铺展动力学以及探究温度对润湿的影响,然而有效势函数的缺乏限制了该方法在其他体系的推广,且势计算结果的准确性与可靠性严重依赖势函数的参数选择。电子尺度的第一性原理计算可探究弱界面结合体系中不同晶面取向下润湿性差异的根本原因、强界面结合体系中界面微观构型对初始润湿性的影响、反应后熔体/反应产物界面成键特点以及平衡润湿性差异,但是该方法的缺点是计算原子个数有限,需要绝对零度的模拟温度。Ab-initio分子动力学是前两种方法的结合,虽然不依赖于势函数的参数选择,但是仍受限于计算原子个数和模拟效率。
本文从每种方法的基本原理、实验操作或模型构建及优缺点等三个方面,阐述了弱/强界面结合体系中液/固晶面润湿性研究进展,并对三种微观模拟方法的未来改进方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑棋文
范同祥
关键词:  液/固界面  润湿  晶面结构  实验测量  分子动力学  第一性原理  Ab-initio分子动力学    
Abstract: Liquid/solid interface wettability plays an important role in brazing, liquid-phase preparation of metal matrix composites and other fields. Some literatures have indicated that the wettability can be affected by crystal surfaces of solid. Therefore, studying the wetting behavior of liquid on different crystal surfaces is of great importance for an in-depth understanding of the wetting process, and also tailoring, improving the wettability more specifically.
Experimental measurements for studying the wettability of the liquid/solid interface considering different crystal surfaces are mainly sessile-drop methods, which are limited by availability of the substrate with a specific crystal surface and susceptible to environmental factors for both of weakly-bonding interface and strongly-bonding interface. Thus it has not yet been widely promoted and applied. Micro-scale simulations can not only establish solid models with different crystal surfaces, but also avoid the environmental sensitivity of experimental measurements, and thus they have distinct advantages in predicting experimental results.
Micro-scale simulation methods used for liquid/solid interface wettability research include molecular dynamics, first-principles calculations and Ab-initio molecular dynamics. At present, molecular dynamics simulations are mainly applied to strongly-bonding metal/metal system. It can simu-late melting and wetting process at realistic physical conditions to study wettability, interfacial reaction, spreading kinetics, and also investigate effect of temperature on wettability. However, the lack of effective potential function limits its application and the accuracy and reliability of calculation results are dependent on parameter selection of potential funciton. Electronic-scale first-principles calculations can explain the wettability difference under different crystal surface orientation in weakly-bonding systems in depth, and analyze the influence of interfacial microstructure on initial wettability, explore the bonding characteristics of the melt/reaction product interface and explain difference of equilibrium wettability in strongly-bonding systems. However, the obvious drawback of this method are the limited atoms for calculation and simulation temperature of 0 K. Ab-initio molecular dynamics simulation, as a combination of molecular dynamics and first-principles calculations, is independent of potential function, but is still limited by the number of atoms and simulation efficiency.
In this paper, the research progress on liquid/solid interface wettability considering crystal surfaces for both of weakly-bonding interface and strongly-bonding interfaces is reviewed from three aspects, including basic principles, experimental methods or model construction, as well as advantages and disadvantages of each method. The outlooks are also proposed.
Key words:  liquid/solid interface    wettability    crystal surface structure    experimental measurements    molecular dynamics    first-principle calculations    Ab-initio molecular dynamics
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB333  
基金资助: 国家重点研发计划专项课题(2017YFB0703101)
通讯作者:  txfan@sjtu.edu.cn   
作者简介:  郑棋文,2017年7月毕业于中南大学,获得工学学士学位。现为上海交通大学金属基复合材料国家重点实验室研究生,在范同祥教授的指导下进行项目研究。目前主要从事金刚石/铝固液界面润湿性的第一性原理研究工作。
范同祥, 上海交通大学材料学院教授、博士研究生导师。1999 年获上海交通大学和日本大阪大学联合培养博士学位, 2000—2001 年在日本科学技术厅进行博士后研究工作。作为主要人员近年来主持或承担国家杰出青年基金项目、教育部新世纪优秀人才计划、霍英东基金优选资助课题、上海市基础研究重点项目和重大项目、上海市科委纳米专项等研究。兼任中国材料研究学会青年委员会理事、中国有色金属学会材料科学与工程委员会委员和多种国内外期刊审稿人。主要从事特种功能金属基复合材料和生物启迪功能材料工作。近年来, 代表性论文发表在Prog. Mater. Sci.、Adv. Mater.、Adv. Funct. Mater.、J. Mater. Chem.、Chem. Mater.、Acta Mater.、J. Am. Ceram. Soc.、J.Eur. Ceram. Soc.、Carbon、Micropor. Mesopor. Mat.、Nanotechnology、Scripta Mater.、J. Mater. Res.、Metall. Mater. Trans. A等期刊上。
引用本文:    
郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
ZHENG Qiwen, FAN Tongxiang. Experimental and Simulation Methods on Liquid/Solid Interface Wettability Considering Crystal Surfaces. Materials Reports, 2022, 36(9): 21010025-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010025  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21010025
1 Yang L, Xia M X, Babu N H. Materials Transactions, 2015, 56(3), 277.
2 Gao Y S, Gao Z Y, Sun W. The Chinese Journal of Nonferrous Metals, 2016, 26(2), 415(in Chinese).
高跃升, 高志勇, 孙伟. 中国有色金属学报, 2016, 26(2),415.
3 Chen X. The wetting properties of Li droplet on Cu and Fe surfaces: A molecular dynamics study. Master's Thesis, Hunan University, China, 2016(in Chinese).
陈欣. 液态Li在固体Cu和Fe表面润湿性的分子动力学模拟研究. 硕士学位论文, 湖南大学, 2016.
4 Monje I E, Louis E, Molina J M. Scripta Materialia, 2012, 66(10), 789.
5 Nogi K, Okada Y, Ogino K, et al. Materials Transactions, JIM, 1994, 35(3), 156.
6 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95,65.
7 Fang X. Theoretical prediction of interfacial reaction and work of adhesion in SiC/Al composites. Master's Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese).
房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究. 硕士学位论文, 上海交通大学, 2013.
8 Yu H S. Machinery, 2006(12), 32(in Chinese).
于化顺. 机械制造, 2006(12), 32.
9 Qu W, Fan T X. Materials Reports A: Review Papers, 2019, 33(11),3606(in Chinese).
屈伟, 范同祥. 材料导报:综述篇, 2019, 33(11), 3606.
10 Zang J. Wetting and adhesion at Al/MgAl2O4 interfaces and the effect of substrate crystallographic orientation. Master's Thesis, Jilin University, China, 2014(in Chinese).
臧娟. Al-MgAl2O4界面润湿与粘结及基板晶体取向的影响. 硕士学位论文, 吉林大学, 2014.
11 Zhang D. Wetting of ceramics by molten Mg and effect of evaporation. Ph.D. Thesis, Jilin University, China, 2012(in Chinese).
张丹. 熔融Mg在陶瓷基板上的润湿和蒸发的影响. 博士学位论文, 吉林大学, 2012.
12 Nogi K, Tsujimoto M, Ogino K, et al. Acta Metallurgica et Materialia, 1992, 40(5), 1045.
13 Dong E T, Shen P, Shi L X, et al. Journal of Materials Science, 2013, 48(17), 6008.
14 Fujii H, Izutani S, Matsumoto T, et al. Materials Science & Engineering A, 2006, 417(1-2), 99.
15 Henrich V E. Surface Science, 1976, 57(1), 385.
16 Chern G, Huang J J, Leung T C. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(3), 964.
17 Bourges-Monnier C, Shanahan M E R. Langmuir, 1995, 11(7), 2820.
18 Panwar A K, Barthwal S K, Ray S. Journal of Adhesion Science & Technology, 2003, 17(10), 1321.
19 Kumar G, Prabhu K N. Advances in Colloid and Interface Science, 2007, 133(2), 61.
20 Froumin N, Piness M, Barzilai S, et al. Journal of Materials Science, 2012, 47(24), 8450.
21 Morgiel J, Sobczak N, Pomorska M, et al. Archives of Metallurgy and Materials, 2013, 58(2), 497.
22 Shen P, Fujii H, Matsumoto T, et al. Acta Materialia,2004,52(4),887.
23 Ownby P D, Li K W K, Douglas A, et al. Journal of the American Ceramic Society, 1991, 74(6), 1275.
24 Shen P, Fujii H, Matsumoto T, et al. Journal of the American Ceramic Society, 2005, 87(7), 2151.
25 Ip S W, Kucharski M, Toguri J M. Journal of Materials Science Letters, 1993, 12(21), 1699.
26 Jung W, Song H, Park S W, et al. Metallurgical and Materials Transactions B, 1996, 27(1), 51.
27 An Q. Wettabiltiy of C, B13C2 and Al2O3 by molten Al and Al alloys. Master's Thesis, Jilin University, China, 2020(in Chinese).
安勤. 熔融Al及Al合金在C、B13C2及Al2O3上的润湿. 硕士学位论文,吉林大学, 2020.
28 Shen P, Fujii H, Matsumoto T, et al. Acta Materialia, 2003, 51(16), 4897.
29 Zhang D, Wang L, Xia M, et al. Materials Characterization, 2016, 119, 92.
30 Mcevoy A J, Williams R H, Higginbotham I G. Journal of Materials Science, 1976, 11(2), 297.
31 Laurent V, Chatain D, Chatillon C, et al. Acta Metallurgica, 1988, 36(7), 1797.
32 John H, Hausner H. Journal of Materials Science Letters, 1986, 5(5), 549.
33 Wang K. Molecular dynamics study of deposition and nanoindentation for Cu64Zr36 metallic glass thin film. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
王康. Cu64Zr36非晶合金薄膜沉积与纳米压痕分子动力学研究. 硕士学位论文, 哈尔滨工业大学, 2020.
34 Wang J J. The effect of nano-pillared carbon surfaces on the wetting transition of liquid metal. Ph.D. Thesis, Shandong University, China, 2019(in Chinese).
王俊珺. 石墨烯类结构材料对镓液滴润湿状态的影响. 博士学位论文, 山东大学, 2019.
35 Zou C X, Sun X G, Xu C, et al. Computational Materials Science, 2018, 149, 435.
36 Chen X, Sun X G, Deng H Q, et al. Computational Materials Science, 2016, 119, 114.
37 Webb E B, Grest G S, Heine D R. Physical Review Letters, 2003, 91(23), 236102.
38 Timoshenko V, Bochenkov V, Traskine V, et al. Journal of Materials Engineering & Performance, 2012, 21(5), 575.
39 Hsieh J Y, Chen J L, Chen C, et al. Nano-Micro Letters, 2010, 2(2), 60.
40 Xu S, Fan X F, Gu C Z, et al. Journal of Nuclear Materials, 2020, 539, 152345.
41 Lin L, Hui S, Lu G, et al. Chemical Engineering Science, 2017, 174, 127.
42 Deng J. Molecular dynamics simulation and interface analysis on mechanism of dip-coating aluminum on ceramics. Master's Thesis, Tsinghua University, China, 2018(in Chinese).
邓婧. 陶瓷热浸镀铝界面分析及超润湿机理分子动力学计算. 硕士学位论文, 清华大学, 2018.
43 Fan J C. Mechanical mechanisms of wetting at solid-liquid interfaces and mass transport on the nanoscale. Ph.D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
范竞存. 纳尺度固液界面润湿及物质输运的力学机理. 博士学位论文, 中国科学技术大学, 2020.
44 Feng Z Z. The dynamic simulation of the wettability of a water droplet on a solid surface. Master's Thesis, Dalian Universiy of Technology, China, 2014(in Chinese).
冯珍珍. 液滴在固体表面润湿性的分子动力学模拟. 硕士学位论文, 大连理工大学, 2014.
45 Zhang K. Molecular dynamics simulations of the growth mechanism of methane hydrate and the wettability of graphene surface. Master's Thesis, Xiangtan University, China, 2015(in Chinese).
张柯. 甲烷水合物的形成机制及水在石墨烯表面润湿性的分子动力学模拟. 硕士学位论文, 湘潭大学, 2015.
46 Hu Y, Gao Z, Sun W, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2012, 415, 439.
47 Qiu F, Wang M. Zhou H G, et al. Acta Physica Sinica, 2013, 62(12), 21(in Chinese).
邱丰, 王猛, 周化光,等. 物理学报, 2013, 62(12), 21.
48 Webb Ⅲ E B, Grest G S, Heine D R, et al. Acta Materialia, 2005, 53(11), 3163.
49 Lin Q L. Wettability and spreadig dynamics of carbide ceramics by molten metals. Ph.D. Thesis, Jilin University, China, 2011(in Chinese).
林巧力. 金属熔体在碳化物陶瓷上的润湿性及铺展动力学. 博士学位论文.吉林大学, 2011.
50 Gao X L. The numerical simulation-based charcaterization method and the scale dependence of the wettability of nanoscale solid materials. Master's Thesis, Dalian University of Technology, China, 2020(in Chinese).
高晓龙. 纳米尺度固体材料表面润湿性的数值模拟表征方法及其尺度效应研究. 硕士学位论文, 大连理工大学, 2020.
51 Lyu X J, Guan C H, Han Z X, et al. Computational Materials Science, 2020, 174, 109487.
52 Kuboy A, Makino T, Sugiyama D, et al. Journal of Materials Science, 2005, 40(9-10), 2395.
53 Swiler T P, Loehman R E. Acta Materialia, 2000, 48(18-19), 4419.
54 Streitz F H, Mintmire J W. Physical Review B Condensed Matter, 1993, 318(16), 11996.
55 Aral G. Turkish Journal of Physics, 2020, 44(1), 24.
56 Aral G. Parallel molecular dynamics simulations of dynamics of oxidation and reactive wetting in metal/ceramic systems, Louisiana State University and Agricultural & Mechanical College, USA, 2003.
57 Lai X. Molecualr dynamics study of crack propagation at the interface between Al and α-Al2O3. Master's Thesis, Wuhan University of Technology, China, 2010(in Chinese).
赖欣. Al/α-Al2O3界面裂纹扩展的分子动力学模拟. 硕士学位论文, 武汉理工大学, 2010.
58 Ahmet T, Tahir C. Materials Science Forum, 2018, 915, 185.
59 Wang L. Mechanistic study of plasma interactions with DNA molecular based on reaction molecular. Master's Thesis, Shandong University, China, 2020(in Chinese).
王磊. 基于反应分子动力学模拟的等离子体与DNA分子相互作用的机理研究.硕士学位论文,山东大学, 2020.
60 Luo T. Reactive molecular dynamics simulation of the thermal stabilization of carbon fiber precursors. Master's Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
罗涛. 碳纤维原丝热稳定化过程的反应分子动力学模拟. 硕士学位论文, 北京化工大学, 2020.
61 Hoyt J J, Garvin J W, Webb E B, et al. Modelling & Simulation in Materials Science & Engineering, 2003, 11(3), 287.
62 Foiles S M, Baskes M I, Daw M S. Physical Review B, 1986, 33(12), 7983.
63 Diaz R, Guo Z. Numerical Heat Transfer Part A-Applications, 2017, 72(12), 891.
64 Xie X D, Lu D. Energy Band Theory of Solids(2nd), Fudan University Press, China, 2007(in Chinese).
谢希德, 陆栋. 固体能带理论(第2版), 复旦大学出版社, 2007.
65 Zhang X Z, Xu P H, Zhang M F, et al. Applied Surface Science, 2020, 517, 146201.
66 Christensen M, Dudiy S, Wahnstrm G. Physical Review B, 2002, 65(4), 045408.
67 Dudiy S V, Lundqvist B I. Physical Review B, 2004, 69(12), 125421.
68 Dong E T. A first-principles study of metal-ceramic interfacial bonding. Master's Thesis, Jilin University, China, 2013(in Chinese).
董二婷. 金属—陶瓷界面结合的第一原理研究. 硕士学位论文,吉林大学, 2013.
69 Xie H N, Zhao N Q, Shi C S, et al. Computational Materials Science, 2021,188, 110226.
70 Xu Y, Liu H B, Dong X W, et al. Composite Interfaces, 2018, 25(8), 713.
71 Liu X Y, Dong H B, Lyu X W, et al. Molecular Simulation, 2019, 45(1), 50.
72 Xu H F, Meng F W, Lei X W, et al. Ceramics International, 2020, 46(16), 25705.
73 Wang Z X, Li Q L, Zheng J Y, et al. Rare Metal Materials & Enginee-ring, 2017, 46(9), 2345.
74 Sholl D S, Steckel J A. Density functional theory: a practical introduction, Wiley, USA, 2009.
75 Guo H B, Qi Y, Li X D. Journal of Applied Physics, 2010, 107(3), 033722.
76 Rocher J P, Quenisset J M, Naslain R. Journal of Materials Science, 1989, 24(8), 2697.
77 Chattopadhyay A K, Roy P, Sarangi S K. Surface and Coatings Technology, 2009, 204(4), 410.
78 Durkin C R. Georgia Institute of Technology, DOI:http://hdl.handle.net/18853/19857.
79 Liu L L. Generalized stacking fault energy,twinning and dislocation of materials at finite temperature based on the first-principles study and quasiharmonic approximation. Ph.D. Thesis, Chongqing University, China, 2015(in Chinese).
刘利利. 有限温度下材料的广义层错能、孪生及位错. 博士学位论文, 重庆大学, 2015.
80 Xie J, De Gironcoli S, Baroni S, et al. Physical Review B, 2012, 59(2), 970.
81 Dal C A, Baroni S, Resta R, et al. Physical Review B, Condensed Matter, 1993, 47(7), 3588.
82 Baroni S, Giannozzi P, Testa A. Physical Review Letters, 1987, 58(18), 1861.
83 Taylor M B, Sims C E, Barrera G D, et al. Physical Review B, 1999, 59(10), 6742.
84 Liu L L, Wang R, Wu X Z, et al. Computational Materials Science, 2014, 88, 124.
85 Sleight A W. Inorganic Chemistry, 1998, 37(12), 2854.
86 Huisman W J, Peters J F, Zwanenburg M J, et al. Nature, 1997, 390(6685), 379.
87 Kaplan W D, Kauffmann Y. Annual Review of Materials Research, 2006, 36(1), 1.
88 Huitema H E A, Vlot M J, Van der Eerden J P. The Journal of Chemical Physics, 1999, 111(10), 4714.
89 Johnson E. Science, 2002, 296(5567), 477.
90 Oh S H, Kauffmann Y, Scheu C, et al. Science,2005,310(5748),661.
91 How J M. Philosophical Magazine A, 2006, 74(3), 761.
92 Huisman W J, Peters J F, Derks J W, et al. Review of Scientific Instruments, 1997, 68(11), 4169.
93 Donnelly S E. Science, 2002, 296(5567), 507.
94 Hashibon A, Elsässer C, Mishin Y, et al. Physical Review B, 2007, 76(24), 245434.
95 Ma L, Lu Y, Li S Y, et al. Applied Surface Science, 2018, 435, 863.
96 Liu X, Dong H B, Lyu X W, et al. Applied Physics A, 2018, 124, 531.
97 Li B T, Chen Z, Zheng H Z, et al. Applied Surface Science, 2019, 48, 811.
98 Wang L C. Structural and dynamical properties of H2S under high pressure: Ab-initio molecular dynamics strudies. Master's Thesis, Jilin University, China, 2007(in Chinese).
汪连城. 高压下硫化氢体系结构和动力学性质的从头算分子动力学研究. 硕士学位论文, 吉林大学, 2007.
99 Zhang X X. Ab initio molecular dynamics study of the hydrogen bonding in liquid water. Master's Thesis, Hebei University of Technology, China, 2007(in Chinese).
张秀欣. 液态水分子间氢键相互作用的从头分子动力学研究. 硕士学位论文, 河北工业大学, 2007.
100 Liu P. Studies on the reactivity of hydrated electron in aqueous solution by Ab-initio molecular dyanmics simulation. Master's Thesis, Shandong University, China, 2013(in Chinese).
刘平. 水溶液中水合电子的反应性从头算动力学研究. 硕士学位论文, 山东大学, 2013.
101 Liu Z J, Zheng S X, Lu Z B, et al. Carbon, 2018, 127, 548.
102 Delannay F, Froyen L. Journal of Materials Science, 1987, 22(1), 1.
103 Ramqvist L. Jernkontorets Annaler, 1969, 153(4), 159.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[3] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[4] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[5] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[6] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[7] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[8] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[9] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[10] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[11] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[12] 浦娟, 薛松柏, 张雷, 吴铭方, 龙伟民, 王水庆, 钱似舰, 林铁松. CeO2对Ag30CuZnSn药芯银钎料润湿性能及钎焊接头组织与性能的影响[J]. 材料导报, 2021, 35(8): 8134-8139.
[13] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[14] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[15] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed