Abstract: Liquid/solid interface wettability plays an important role in brazing, liquid-phase preparation of metal matrix composites and other fields. Some literatures have indicated that the wettability can be affected by crystal surfaces of solid. Therefore, studying the wetting behavior of liquid on different crystal surfaces is of great importance for an in-depth understanding of the wetting process, and also tailoring, improving the wettability more specifically. Experimental measurements for studying the wettability of the liquid/solid interface considering different crystal surfaces are mainly sessile-drop methods, which are limited by availability of the substrate with a specific crystal surface and susceptible to environmental factors for both of weakly-bonding interface and strongly-bonding interface. Thus it has not yet been widely promoted and applied. Micro-scale simulations can not only establish solid models with different crystal surfaces, but also avoid the environmental sensitivity of experimental measurements, and thus they have distinct advantages in predicting experimental results. Micro-scale simulation methods used for liquid/solid interface wettability research include molecular dynamics, first-principles calculations and Ab-initio molecular dynamics. At present, molecular dynamics simulations are mainly applied to strongly-bonding metal/metal system. It can simu-late melting and wetting process at realistic physical conditions to study wettability, interfacial reaction, spreading kinetics, and also investigate effect of temperature on wettability. However, the lack of effective potential function limits its application and the accuracy and reliability of calculation results are dependent on parameter selection of potential funciton. Electronic-scale first-principles calculations can explain the wettability difference under different crystal surface orientation in weakly-bonding systems in depth, and analyze the influence of interfacial microstructure on initial wettability, explore the bonding characteristics of the melt/reaction product interface and explain difference of equilibrium wettability in strongly-bonding systems. However, the obvious drawback of this method are the limited atoms for calculation and simulation temperature of 0 K. Ab-initio molecular dynamics simulation, as a combination of molecular dynamics and first-principles calculations, is independent of potential function, but is still limited by the number of atoms and simulation efficiency. In this paper, the research progress on liquid/solid interface wettability considering crystal surfaces for both of weakly-bonding interface and strongly-bonding interfaces is reviewed from three aspects, including basic principles, experimental methods or model construction, as well as advantages and disadvantages of each method. The outlooks are also proposed.
1 Yang L, Xia M X, Babu N H. Materials Transactions, 2015, 56(3), 277. 2 Gao Y S, Gao Z Y, Sun W. The Chinese Journal of Nonferrous Metals, 2016, 26(2), 415(in Chinese). 高跃升, 高志勇, 孙伟. 中国有色金属学报, 2016, 26(2),415. 3 Chen X. The wetting properties of Li droplet on Cu and Fe surfaces: A molecular dynamics study. Master's Thesis, Hunan University, China, 2016(in Chinese). 陈欣. 液态Li在固体Cu和Fe表面润湿性的分子动力学模拟研究. 硕士学位论文, 湖南大学, 2016. 4 Monje I E, Louis E, Molina J M. Scripta Materialia, 2012, 66(10), 789. 5 Nogi K, Okada Y, Ogino K, et al. Materials Transactions, JIM, 1994, 35(3), 156. 6 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95,65. 7 Fang X. Theoretical prediction of interfacial reaction and work of adhesion in SiC/Al composites. Master's Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese). 房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究. 硕士学位论文, 上海交通大学, 2013. 8 Yu H S. Machinery, 2006(12), 32(in Chinese). 于化顺. 机械制造, 2006(12), 32. 9 Qu W, Fan T X. Materials Reports A: Review Papers, 2019, 33(11),3606(in Chinese). 屈伟, 范同祥. 材料导报:综述篇, 2019, 33(11), 3606. 10 Zang J. Wetting and adhesion at Al/MgAl2O4 interfaces and the effect of substrate crystallographic orientation. Master's Thesis, Jilin University, China, 2014(in Chinese). 臧娟. Al-MgAl2O4界面润湿与粘结及基板晶体取向的影响. 硕士学位论文, 吉林大学, 2014. 11 Zhang D. Wetting of ceramics by molten Mg and effect of evaporation. Ph.D. Thesis, Jilin University, China, 2012(in Chinese). 张丹. 熔融Mg在陶瓷基板上的润湿和蒸发的影响. 博士学位论文, 吉林大学, 2012. 12 Nogi K, Tsujimoto M, Ogino K, et al. Acta Metallurgica et Materialia, 1992, 40(5), 1045. 13 Dong E T, Shen P, Shi L X, et al. Journal of Materials Science, 2013, 48(17), 6008. 14 Fujii H, Izutani S, Matsumoto T, et al. Materials Science & Engineering A, 2006, 417(1-2), 99. 15 Henrich V E. Surface Science, 1976, 57(1), 385. 16 Chern G, Huang J J, Leung T C. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(3), 964. 17 Bourges-Monnier C, Shanahan M E R. Langmuir, 1995, 11(7), 2820. 18 Panwar A K, Barthwal S K, Ray S. Journal of Adhesion Science & Technology, 2003, 17(10), 1321. 19 Kumar G, Prabhu K N. Advances in Colloid and Interface Science, 2007, 133(2), 61. 20 Froumin N, Piness M, Barzilai S, et al. Journal of Materials Science, 2012, 47(24), 8450. 21 Morgiel J, Sobczak N, Pomorska M, et al. Archives of Metallurgy and Materials, 2013, 58(2), 497. 22 Shen P, Fujii H, Matsumoto T, et al. Acta Materialia,2004,52(4),887. 23 Ownby P D, Li K W K, Douglas A, et al. Journal of the American Ceramic Society, 1991, 74(6), 1275. 24 Shen P, Fujii H, Matsumoto T, et al. Journal of the American Ceramic Society, 2005, 87(7), 2151. 25 Ip S W, Kucharski M, Toguri J M. Journal of Materials Science Letters, 1993, 12(21), 1699. 26 Jung W, Song H, Park S W, et al. Metallurgical and Materials Transactions B, 1996, 27(1), 51. 27 An Q. Wettabiltiy of C, B13C2 and Al2O3 by molten Al and Al alloys. Master's Thesis, Jilin University, China, 2020(in Chinese). 安勤. 熔融Al及Al合金在C、B13C2及Al2O3上的润湿. 硕士学位论文,吉林大学, 2020. 28 Shen P, Fujii H, Matsumoto T, et al. Acta Materialia, 2003, 51(16), 4897. 29 Zhang D, Wang L, Xia M, et al. Materials Characterization, 2016, 119, 92. 30 Mcevoy A J, Williams R H, Higginbotham I G. Journal of Materials Science, 1976, 11(2), 297. 31 Laurent V, Chatain D, Chatillon C, et al. Acta Metallurgica, 1988, 36(7), 1797. 32 John H, Hausner H. Journal of Materials Science Letters, 1986, 5(5), 549. 33 Wang K. Molecular dynamics study of deposition and nanoindentation for Cu64Zr36 metallic glass thin film. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 王康. Cu64Zr36非晶合金薄膜沉积与纳米压痕分子动力学研究. 硕士学位论文, 哈尔滨工业大学, 2020. 34 Wang J J. The effect of nano-pillared carbon surfaces on the wetting transition of liquid metal. Ph.D. Thesis, Shandong University, China, 2019(in Chinese). 王俊珺. 石墨烯类结构材料对镓液滴润湿状态的影响. 博士学位论文, 山东大学, 2019. 35 Zou C X, Sun X G, Xu C, et al. Computational Materials Science, 2018, 149, 435. 36 Chen X, Sun X G, Deng H Q, et al. Computational Materials Science, 2016, 119, 114. 37 Webb E B, Grest G S, Heine D R. Physical Review Letters, 2003, 91(23), 236102. 38 Timoshenko V, Bochenkov V, Traskine V, et al. Journal of Materials Engineering & Performance, 2012, 21(5), 575. 39 Hsieh J Y, Chen J L, Chen C, et al. Nano-Micro Letters, 2010, 2(2), 60. 40 Xu S, Fan X F, Gu C Z, et al. Journal of Nuclear Materials, 2020, 539, 152345. 41 Lin L, Hui S, Lu G, et al. Chemical Engineering Science, 2017, 174, 127. 42 Deng J. Molecular dynamics simulation and interface analysis on mechanism of dip-coating aluminum on ceramics. Master's Thesis, Tsinghua University, China, 2018(in Chinese). 邓婧. 陶瓷热浸镀铝界面分析及超润湿机理分子动力学计算. 硕士学位论文, 清华大学, 2018. 43 Fan J C. Mechanical mechanisms of wetting at solid-liquid interfaces and mass transport on the nanoscale. Ph.D. Thesis, University of Science and Technology of China, China, 2020(in Chinese). 范竞存. 纳尺度固液界面润湿及物质输运的力学机理. 博士学位论文, 中国科学技术大学, 2020. 44 Feng Z Z. The dynamic simulation of the wettability of a water droplet on a solid surface. Master's Thesis, Dalian Universiy of Technology, China, 2014(in Chinese). 冯珍珍. 液滴在固体表面润湿性的分子动力学模拟. 硕士学位论文, 大连理工大学, 2014. 45 Zhang K. Molecular dynamics simulations of the growth mechanism of methane hydrate and the wettability of graphene surface. Master's Thesis, Xiangtan University, China, 2015(in Chinese). 张柯. 甲烷水合物的形成机制及水在石墨烯表面润湿性的分子动力学模拟. 硕士学位论文, 湘潭大学, 2015. 46 Hu Y, Gao Z, Sun W, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2012, 415, 439. 47 Qiu F, Wang M. Zhou H G, et al. Acta Physica Sinica, 2013, 62(12), 21(in Chinese). 邱丰, 王猛, 周化光,等. 物理学报, 2013, 62(12), 21. 48 Webb Ⅲ E B, Grest G S, Heine D R, et al. Acta Materialia, 2005, 53(11), 3163. 49 Lin Q L. Wettability and spreadig dynamics of carbide ceramics by molten metals. Ph.D. Thesis, Jilin University, China, 2011(in Chinese). 林巧力. 金属熔体在碳化物陶瓷上的润湿性及铺展动力学. 博士学位论文.吉林大学, 2011. 50 Gao X L. The numerical simulation-based charcaterization method and the scale dependence of the wettability of nanoscale solid materials. Master's Thesis, Dalian University of Technology, China, 2020(in Chinese). 高晓龙. 纳米尺度固体材料表面润湿性的数值模拟表征方法及其尺度效应研究. 硕士学位论文, 大连理工大学, 2020. 51 Lyu X J, Guan C H, Han Z X, et al. Computational Materials Science, 2020, 174, 109487. 52 Kuboy A, Makino T, Sugiyama D, et al. Journal of Materials Science, 2005, 40(9-10), 2395. 53 Swiler T P, Loehman R E. Acta Materialia, 2000, 48(18-19), 4419. 54 Streitz F H, Mintmire J W. Physical Review B Condensed Matter, 1993, 318(16), 11996. 55 Aral G. Turkish Journal of Physics, 2020, 44(1), 24. 56 Aral G. Parallel molecular dynamics simulations of dynamics of oxidation and reactive wetting in metal/ceramic systems, Louisiana State University and Agricultural & Mechanical College, USA, 2003. 57 Lai X. Molecualr dynamics study of crack propagation at the interface between Al and α-Al2O3. Master's Thesis, Wuhan University of Technology, China, 2010(in Chinese). 赖欣. Al/α-Al2O3界面裂纹扩展的分子动力学模拟. 硕士学位论文, 武汉理工大学, 2010. 58 Ahmet T, Tahir C. Materials Science Forum, 2018, 915, 185. 59 Wang L. Mechanistic study of plasma interactions with DNA molecular based on reaction molecular. Master's Thesis, Shandong University, China, 2020(in Chinese). 王磊. 基于反应分子动力学模拟的等离子体与DNA分子相互作用的机理研究.硕士学位论文,山东大学, 2020. 60 Luo T. Reactive molecular dynamics simulation of the thermal stabilization of carbon fiber precursors. Master's Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese). 罗涛. 碳纤维原丝热稳定化过程的反应分子动力学模拟. 硕士学位论文, 北京化工大学, 2020. 61 Hoyt J J, Garvin J W, Webb E B, et al. Modelling & Simulation in Materials Science & Engineering, 2003, 11(3), 287. 62 Foiles S M, Baskes M I, Daw M S. Physical Review B, 1986, 33(12), 7983. 63 Diaz R, Guo Z. Numerical Heat Transfer Part A-Applications, 2017, 72(12), 891. 64 Xie X D, Lu D. Energy Band Theory of Solids(2nd), Fudan University Press, China, 2007(in Chinese). 谢希德, 陆栋. 固体能带理论(第2版), 复旦大学出版社, 2007. 65 Zhang X Z, Xu P H, Zhang M F, et al. Applied Surface Science, 2020, 517, 146201. 66 Christensen M, Dudiy S, Wahnstrm G. Physical Review B, 2002, 65(4), 045408. 67 Dudiy S V, Lundqvist B I. Physical Review B, 2004, 69(12), 125421. 68 Dong E T. A first-principles study of metal-ceramic interfacial bonding. Master's Thesis, Jilin University, China, 2013(in Chinese). 董二婷. 金属—陶瓷界面结合的第一原理研究. 硕士学位论文,吉林大学, 2013. 69 Xie H N, Zhao N Q, Shi C S, et al. Computational Materials Science, 2021,188, 110226. 70 Xu Y, Liu H B, Dong X W, et al. Composite Interfaces, 2018, 25(8), 713. 71 Liu X Y, Dong H B, Lyu X W, et al. Molecular Simulation, 2019, 45(1), 50. 72 Xu H F, Meng F W, Lei X W, et al. Ceramics International, 2020, 46(16), 25705. 73 Wang Z X, Li Q L, Zheng J Y, et al. Rare Metal Materials & Enginee-ring, 2017, 46(9), 2345. 74 Sholl D S, Steckel J A. Density functional theory: a practical introduction, Wiley, USA, 2009. 75 Guo H B, Qi Y, Li X D. Journal of Applied Physics, 2010, 107(3), 033722. 76 Rocher J P, Quenisset J M, Naslain R. Journal of Materials Science, 1989, 24(8), 2697. 77 Chattopadhyay A K, Roy P, Sarangi S K. Surface and Coatings Technology, 2009, 204(4), 410. 78 Durkin C R. Georgia Institute of Technology, DOI:http://hdl.handle.net/18853/19857. 79 Liu L L. Generalized stacking fault energy,twinning and dislocation of materials at finite temperature based on the first-principles study and quasiharmonic approximation. Ph.D. Thesis, Chongqing University, China, 2015(in Chinese). 刘利利. 有限温度下材料的广义层错能、孪生及位错. 博士学位论文, 重庆大学, 2015. 80 Xie J, De Gironcoli S, Baroni S, et al. Physical Review B, 2012, 59(2), 970. 81 Dal C A, Baroni S, Resta R, et al. Physical Review B, Condensed Matter, 1993, 47(7), 3588. 82 Baroni S, Giannozzi P, Testa A. Physical Review Letters, 1987, 58(18), 1861. 83 Taylor M B, Sims C E, Barrera G D, et al. Physical Review B, 1999, 59(10), 6742. 84 Liu L L, Wang R, Wu X Z, et al. Computational Materials Science, 2014, 88, 124. 85 Sleight A W. Inorganic Chemistry, 1998, 37(12), 2854. 86 Huisman W J, Peters J F, Zwanenburg M J, et al. Nature, 1997, 390(6685), 379. 87 Kaplan W D, Kauffmann Y. Annual Review of Materials Research, 2006, 36(1), 1. 88 Huitema H E A, Vlot M J, Van der Eerden J P. The Journal of Chemical Physics, 1999, 111(10), 4714. 89 Johnson E. Science, 2002, 296(5567), 477. 90 Oh S H, Kauffmann Y, Scheu C, et al. Science,2005,310(5748),661. 91 How J M. Philosophical Magazine A, 2006, 74(3), 761. 92 Huisman W J, Peters J F, Derks J W, et al. Review of Scientific Instruments, 1997, 68(11), 4169. 93 Donnelly S E. Science, 2002, 296(5567), 507. 94 Hashibon A, Elsässer C, Mishin Y, et al. Physical Review B, 2007, 76(24), 245434. 95 Ma L, Lu Y, Li S Y, et al. Applied Surface Science, 2018, 435, 863. 96 Liu X, Dong H B, Lyu X W, et al. Applied Physics A, 2018, 124, 531. 97 Li B T, Chen Z, Zheng H Z, et al. Applied Surface Science, 2019, 48, 811. 98 Wang L C. Structural and dynamical properties of H2S under high pressure: Ab-initio molecular dynamics strudies. Master's Thesis, Jilin University, China, 2007(in Chinese). 汪连城. 高压下硫化氢体系结构和动力学性质的从头算分子动力学研究. 硕士学位论文, 吉林大学, 2007. 99 Zhang X X. Ab initio molecular dynamics study of the hydrogen bonding in liquid water. Master's Thesis, Hebei University of Technology, China, 2007(in Chinese). 张秀欣. 液态水分子间氢键相互作用的从头分子动力学研究. 硕士学位论文, 河北工业大学, 2007. 100 Liu P. Studies on the reactivity of hydrated electron in aqueous solution by Ab-initio molecular dyanmics simulation. Master's Thesis, Shandong University, China, 2013(in Chinese). 刘平. 水溶液中水合电子的反应性从头算动力学研究. 硕士学位论文, 山东大学, 2013. 101 Liu Z J, Zheng S X, Lu Z B, et al. Carbon, 2018, 127, 548. 102 Delannay F, Froyen L. Journal of Materials Science, 1987, 22(1), 1. 103 Ramqvist L. Jernkontorets Annaler, 1969, 153(4), 159.