Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5095-5101    https://doi.org/10.11896/cldb.19120140
  无机非金属及其复合材料 |
基于分子动力学的C-S-H凝胶性能研究进展
杨进波, 赵钲洋, 尹航
山东农业大学水利土木工程学院,泰安 271018
Research Development on Molecular Dynamics of C-S-H Gels
YANG Jinbo, ZHAO Zhengyang, YIN Hang
School of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai’an 271018, China
下载:  全 文 ( PDF ) ( 3602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分子动力学是水泥基材料原子级尺度研究的基本方法之一,在混凝土的精细化设计中具有重要应用。C-S-H凝胶是水泥的主要水化产物,决定硬化水泥基材料的宏观性能。本文详细阐述了C-S-H凝胶分子结构模型和分子动力学力场的常见类别(这是决定模拟准确性的关键因素),探讨了C-S-H凝胶分子动力学模型与宏观性能的关系,总结应用分子动力学研究C-S-H凝胶的相关研究进展。本文对在工程应用中提升水泥基材料物理化学性能具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨进波
赵钲洋
尹航
关键词:  分子动力学  C-S-H凝胶  分子模型  分子力场  力学性质    
Abstract: Molecular dynamics simulation is one of the essential methods at atomic scale in studying cement-based materials, which plays an important role in the precise design of concrete. C-S-H gel is the main hydration product of cement, which determines the macroscopic properties of hardened cement-based materials. In this paper, the molecular structure model of C-S-H gel and the molecular dynamics force field were described in detail, which is the critical factor to determine the accuracy of simulation. The relationship between the molecular dynamics model of C-S-H gel and its macroscopic properties were discussed. The advances in molecular dynamics of C-S-H gel were reviewed. It is of instructional significance to improve the physical and chemical properties of cement-based materials in engineering applications.
Key words:  molecular dynamics    C-S-H gel    molecular model    molecular force field    mechanical properties
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TU528.01  
  TU528.1  
基金资助: 山东省自然科学基金 (ZR2017BA011);山东农业大学科研启动基金 (130/72130)
通讯作者:  yinh@sdau.edu.cn   
作者简介:  杨进波,山东农业大学水利土木工程学院,副教授。2009年1月毕业于清华大学土木工程系,土木工程专业博士。主要从事混凝土材料耐久性与无损检测技术、水泥基材料水化机理、水泥基材料结构与性能的研究。
尹航,山东农业大学水利土木工程学院,副教授。2016年6月毕业于西北农林科技大学水利与建筑工程学院,水利水电工程专业博士。主要从事低维材料的纳米尺度力学计算与分子模拟研究。
引用本文:    
杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
YANG Jinbo, ZHAO Zhengyang, YIN Hang. Research Development on Molecular Dynamics of C-S-H Gels. Materials Reports, 2021, 35(5): 5095-5101.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120140  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5095
1 Han S, Yan P, Liu R. Science China Technological Sciences,2012,55(8),2284.
2 Unger J F, Eckardt S. Archives of Computational Methods in Engineering,2011,18(3),341.
3 Li H, Xiao H, Yuan J, et al. Composites Part B: Engineering,2004,35(2),185.
4 Richardson I G. Cement and Concrete Research,1999,29(8),1131.
5 Murray S J, Subramani V J, Selvam R P, et al. Transportation Research Record,2018,2142(1),75.
6 Richardson I G. Cement and Concrete Research,2008,38(2),137.
7 Kalinichev A G, Wang J, Kirkpatrick R J. Cement and Concrete Research,2007,37(3),337.
8 Zhang Z, Scherer G W, Bauer A. Cement and Concrete Research,2018,107,85.
9 Zhang W S, Wang H X, Ye J Y. Journal of the Chinese Ceramic Society,2005,33(1),63(in Chinese).
张文生,王宏霞,叶家元.硅酸盐学报,2005,33(1),63.
10 Allen A J, Thomas J J, Jennings H M. Nat Mater,2007,6(4),311.
11 Fujii K, Kondo W. Journal of the American Ceramic Society,1983,66(12),220.
12 Yang N R. Nanjing University of Chemical Technology,1998(2),3(in Chinese).
杨南如.南京化工大学学报,1998(2),3.
13 Shi H S. Fly Ash Comprehensive Utilization,2017(5),69(in Chinese).
施惠生.粉煤灰综合利用,2017(5),69.
14 Janik Y J, Kurdowski W, Podsiadly R, et al. Acta Physica Polonica Series A,2001,100(4),529.
15 Taylor H F W. Journal of the American Ceramic Society,1986,69(6),464.
16 Taylor H F W. Advanced Cement Based Materials,1993,1(1),38.
17 Tao L, Shahsavari R. Scientific Reports,2017,7(1),5907.
18 Thomas J J, Jennings H M. Cement and Concrete Research,2006,36(1),30.
19 Tajuelo Rodriguez E, Garbev K, Merz D, et al. Cement and Concrete Research,2017,93,45.
20 Richardson I G. Cement and Concrete Research,2004,34(9),1733.
21 Richardson I G, Groves G W. Journal of Materials Science,1997,32(18),4793.
22 Jennings H M. Cement and Concrete Research,2000,30(1),101.
23 Pellenq R J M, Kushima A, Shahsavari R, et al. Proceedings of the National Academy of Science,2009,106(38),16102.
24 Kantro D L, Brunauer S, Weise C H. Journal of Physical Chemistry,1962,66(10),1804.
25 Pourbeik P, Beaudoin J J, Alizadeh R, et al. Materials and Structures,2015,48(8),2447.
26 Setzer M J, Consultants W, Krailling B, et al. Journal of the Chinese Ceramic Society,2015,3(4),232.
27 Raki L, Beaudoin J, Alizadeh R, et al. Materials,2010,3(2),918.
28 Cong X, Kirkpatrick R J. Advanced Cement Based Materials,1996,3(3),133.
29 Fourmentin M, Faure P, Rodts S, et al. Cement and Concrete Research,2017,95,56.
30 Manzano H, Moeini S, Marinelli F, et al. Journal of the American Chemical Society,2012,134(4),2208.
31 Zhang X, Chang W, Zhang T, et al. Journal of the American Ceramic Society,2000,83(10),2600.
32 Ji Q, Pellenq R J M, Van Vliet K J. Computational Materials Science,2012,53(1),234.
33 Bonaccorsi E, Merlino S, Taylor H F W. Cement and Concrete Research,2004,34(9),1481.
34 Merlino S, Bonaccorsi E, Armbruster T. European Journal of Mineralogy,2001,13(3),577.
35 Yu Z, Lau D. Nanoscale Research Letters,2015,10,173.
36 Yu Z, Zhou A, Lau D. Scientific Reports,2016,6,36967.
37 Cygan R T, Liang J J, Kalinichev A G. The Journal of Physical Chemistry B,2004,108(4),1255.
38 Smith D E, Dang L X. The Journal of Chemical Physics,1994,100(5),3757.
39 Smith D E, Dang L X. The Journal of Chemical Physics,1994,101(9),7873.
40 Koneshan S, Rasaiah J C, Lynden-Bell R M, et al. The Journal of Physical Chemistry B,1998,102(21),4193.
41 qvist J. The Journal of Physical Chemistry,1990,94(21),8021.
42 Shahsavari R, Pellenq R J, Ulm F J. Physical Chemistry Chemical Phy-sics,2011,13(3),1002.
43 Palkovic S D, Yip S, Büyüköztürk O. Journal of the Mechanics and Phy-sics of Solids,2017,109,160.
44 van Duin A C T, Strachan A, Stewman S, et al. The Journal of Physical Chemistry A,2003,107(19),3803.
45 Liang T N, Yang X Z. Chemistry Online,2001,1(in Chinese).
梁太宁,杨小震.化学通报(网络版),2001,1.
46 Briscoe B J, Fiori L, Pelillo E. Journal of Physics D: Applied Physics,1998,31(19),2395.
47 Ye J Y, Zhang W S, Wang H X, et al. Journal of the Chinese Ceramic Society,2010,38(12),2346(in Chinese).
叶家元,张文生,王宏霞,等.硅酸盐学报,2010,38(12),2346.
48 Hou D, Zhu Y, Lu Y, et al. Materials Chemistry and Physics,2014,146(3),503.
49 Hou D, Zhang J, Li Z, et al. Materials and Structures,2014,48(11),3811.
50 Rivas Murillo J S, Mohamed A, Hodo W, et al. International Journal of Damage Mechanics,2015,25(1),98.
51 Hou D, Li Z. Microporous and Mesoporous Materials,2014,195,9.
52 Hou D, Zhao T, Ma H, et al. The Journal of Physical Chemistry C,2015,119(3),1346.
53 Hou D, Li Z, Zhao T, et al. Physical Chemistry Chemical Physics,2015,17(2),1411.
54 Hou D, Ma H, Zhu Y, et al. Acta Materialia,2014,67,81.
55 Zhou Y, Tang L, Liu J, et al. Cement and Concrete Research,2019,125,105891.
56 Shahrin R, Bobko C P. Cement and Concrete Research,2019,125,105863.
57 Lushnikova A, Zaoui A. Journal of Physics and Chemistry of Solids,2017,105,72.
58 Dimov D, Amit I, Gorrie O, et al. Advanced Functional Materials,2018,28(23),1705183.
59 Hou D, Lu Z, Li X, et al. Carbon,2017,115,188.
60 Ferraris C F, Wittmann F H. Cement & Concrete Research,1987,17(3),453.
61 Havlásek P, Jirásek M. Cement and Concrete Research,2016,85,55.
62 Maruyama I, Gartner E, Beppu K, et al. Cement and Concrete Research,2018,111,157.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[3] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[4] 杜惠惠, 倪文, 高广军. 水淬高钛高炉渣制备C40全固废混凝土试验研究[J]. 材料导报, 2020, 34(24): 24055-24060.
[5] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[6] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[7] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[8] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[9] 何亮, 李冠男, 郑雨丰, Alessio Alexiadis, Jan Valentin, Karol J Kowalski. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
[10] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[11] 童涛涛, 李宗利, 杜向琴, 李波, 刘恒杰. 水化硅酸钙层间水吸附规律及其对分子结构的影响[J]. 材料导报, 2020, 34(16): 16049-16054.
[12] 何亮, 黄胡端, Wim Van den bergh, Tóth Csaba, 高杰, Karol Kowalski, Jan Valentin. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101.
[13] 寇佩佩, 冯瑞成, 李海燕, 李龙龙, 王茂茂, 祁永年. 孔洞对含Nb单晶γ-TiAl合金力学性能的影响[J]. 材料导报, 2020, 34(14): 14140-14146.
[14] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[15] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed