Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19083-19093    https://doi.org/10.11896/cldb.19070106
  无机非金属及其复合材料 |
沥青体系的分子动力学研究进展及展望
何亮1, 李冠男2, 郑雨丰1, Alessio Alexiadis3, Jan Valentin4, Karol J Kowalski5
1 重庆交通大学交通土建材料国家地方联合实验室,重庆 400074
2 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
3 伯明翰大学化学工程学院,伯明翰B15 2TT
4 捷克理工大学土木工程学院,布拉格 166 29
5 华沙理工大学土木工程学院,华沙 00-637
Research Progress and Prospect of Molecular Dynamics of Asphalt Systems
HE Liang1, LI Guannan2, ZHENG Yufeng1, Alessio Alexiadis3, Jan Valentin4, Karol J Kowalski5
1 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
3 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
4 Faculty of Civil Engineering, Czech Technical University in Prague, Prague 166 29, Czech Republic
5 Faculty of Civil Engineering, Warsaw University of Technology, Warsaw 00-637, Poland
下载:  全 文 ( PDF ) ( 7673KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国道路工程的飞速发展,沥青混凝土在路面工程中有越来越广泛的应用。近年来,沥青材料的研究已不仅局限于宏观性能试验,还拓展到介观与微观层面对沥青材料进行多尺度研究。分子动力学方法属于微观研究方法的一种,它是通过积分算法模拟研究对象在不同条件下的分子运动轨迹与体系能量变化,并分析模拟数据得出结论。该方法已被广泛应用于分子尺度下路面沥青材料设计与微观机理研究,其优势在于从分子运动的角度解释沥青体系的各种现象与性质。因此,许多学者采用宏观试验和分子动力学模拟相结合的多尺度方法研究沥青体系,这将推动沥青材料的进一步发展。
本文对沥青体系的分子动力学进行了全面的分析,构建了沥青体系分子动力学模型的一般平衡步骤,提出采用密度、玻璃态转变温度、黏度、溶解度参数等对沥青体系分子动力学模型的有效性进行验证。综合分析了分子动力学方法对沥青纳米聚集、自修复、改性、老化、界面黏附等行为机理的研究进展,提出采用耗散粒子动力学与粗粒化分子动力学对现阶段沥青体系分子动力学的研究尺度进行扩展。研究结果表明,沥青类材料的分子动力学方法还处于早期探索阶段,但其发展潜力极大,利用分子动力学方法研究沥青体系各组分分子的动力学行为,可揭示常规试验无法观察到的分子含时运动规律,预测沥青材料的宏观性能并针对沥青的分子结构提出其路用性能改善措施,从分子尺度上推动沥青路面多尺度试验仿真方法的发展与完善,为沥青材料基因组的开发研究奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何亮
李冠男
郑雨丰
Alessio Alexiadis
Jan Valentin
Karol J Kowalski
关键词:  分子动力学  道路沥青  耗散粒子动力学  粗粒化分子动力学    
Abstract: With the rapid development of China road engineering, asphalt concrete has been widely used in road engineering. In recent years, the research on asphalt materials is not limited to macroscopic performance experiments, but also extended to mesoscopic and microscopic scale to develop multiscale research. The molecular dynamics is a kind of microscopic research methods which is carry out the integral algorithm under different conditions to track molecular trajectories of research objects. Molecular dynamics was widely used in bitumen material design and microscopic mechanism research in molecular scale. The advantage is deeply explained the phenomenon and properties of asphalt system from the aspect of molecular motion. Therefore, many scholars study bitumen system by combining macroscopic test and molecular dynamics simulation, which will promote the development of asphalt materials.
In this paper, molecular dynamics of bitumen system was comprehensively analyzed, general equilibrium steps of bitumen molecular dynamics model were constructed. The effectiveness of bitumen molecular dynamics model was verified by density, glass transition temperature, viscosity and solubility parameters. The nano-aggregation, self-repair, modification, aging, interfacial adhesion mechanisms of bitumen researchs based on molecular dynamics were comprehensively analyzed. The results show that the molecular dynamics method of bitumen materials was in early exploration stage, but the development potential is significant. Research on the dynamic behavior of bitumen components molecules by molecular dynamics method can reveal time-dependent molecular motion law that the normal test cannot be observed, predict bitumen macroscopic properties, target on bitumen molecular structures to put forward the improve measurement of bitumen road performance, promote the development of asphalt pavement multi-scale experimental simulation and lay the foundation for asphalt materials genome research.
Key words:  molecular dynamics    road bitumen    dissipative particle dynamics    coarse-grained molecular dynamics
                    发布日期:  2020-11-05
ZTFLH:  U414  
基金资助: 中国-波兰政府间科技合作项目(37-13);中国-捷克政府间科技合作项目(43-9,8JCH1002);国家自然科学基金(51611130189;51978547);重庆市研究生科研创新项目(CYS19238);特殊地区公路工程教育部重点实验室开放基金(300102218508);特殊环境道路工程湖南省重点实验室开放基金(kfj170501)
通讯作者:  heliangfl@163.com   
作者简介:  何亮,重庆交通大学土木工程学院副教授、博士研究生导师,重庆市巴渝学者青年学者。2006年7月毕业于北京交通大学电子信息工程学院,2013年6月在东南大学交通学院交通运输工程专业取得博士学位,2014—2016年在长安大学与英国诺丁汉大学进行博士后研究工作。2016年2月回国后,入选重庆交通大学首批土木新星人才项目,是英国皇家学会牛顿基金获得者,主持政府间国际合作项目3项,国家自然科学基金两项。近年来,在道路工程材料领域发表论文近50篇,包括 Construction and Building Materials、《中国公路学报》《交通运输工程学报》《建筑材料学报》等期刊。
引用本文:    
何亮, 李冠男, 郑雨丰, Alessio Alexiadis, Jan Valentin, Karol J Kowalski. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
HE Liang, LI Guannan, ZHENG Yufeng, Alessio Alexiadis, Jan Valentin, Karol J Kowalski. Research Progress and Prospect of Molecular Dynamics of Asphalt Systems. Materials Reports, 2020, 34(19): 19083-19093.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070106  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19083
1 Yarranton H W, Alboudearej H, Jakher R. Industrial & Engineering Chemistry Research,2000,39(8),2916.
2 Lima F, Leite L. Liquid Fuels Technology,2004,22(5-6),589.
3 Planche J P, Michon L, Martin D, et al. Fuel,1997,76,9.
4 Lu Y. Atomistic characterization and modeling of the deformation and failure properties of asphalt-aggregate interface. Ph.D. Thesis, Virginia Polytechnic Institute and State University, USA,2010.
5 Rebelo L, Sousa J, Abreu A, et al. Fuel,2014,117(1),15.
6 Abraham F, Gao H. Physical Review Letters,2000,84(14),3113.
7 Hentschke R, Winkler R G. Journal of Chemical Physics,1993,99(7),5528.
8 Zhang Z, Yang X, Yang M, et al. Polymer,2004,45(9),3021.
9 Zhang Z, Yang X. Polymer Bulletin,2006,56(2-3),229.
10 Zhang Z, Yang X. Polymer,2006,47(14),5213.
11 Chen Z, Xu W, Tang L. The theory and practice of molecular simulation, Chemical Industry Press, China,2007(in Chinese).
陈正隆,徐为人,汤立达.分子模拟的理论与实践,化学工业出版社,2007.
12 Maginn E, Elliott J. Industrial & Engineering Chemistry Research,2010,49(7),30.
13 Pathria R K, Beale P D. Statistical mechanics (third edition), Academic Press, USA,2011.
14 Yen T F. In: Symposium on Chemistry & Characterization of Asphalts. Washington DC,1990,pp.201.
15 Gray M R. Energy & Fuels,2003,17(6),1566.
16 Zhang L. Physical and mechanical properties of model asphalt systems calculated using molecular simulation. Ph.D. Thesis, University of Rhode Island, USA,2007.
17 Storm D, Edwards J, Decanio S, et al. Energy & Fuels,1994,8(3),561.
18 Zhang L. In: Conference Record of Transportation Center in University of Rhode Island. Rhode Island,2007.pp.1.
19 Kowalewski I, Vandenbroucke M, Huc A, et al. Energy & Fuels,1996,10(1),97.
20 Linstrom P, Mallard W. National Institute of Standards and Technology: Gaithersburg MD,2005,10(3),406.
21 Bunger J, Li N. In: Advances in Chemistry Series 195. Washington DC,1981,pp.1.
22 Henning Groenzin, Oliver Mullins. Energy Fuels,2000,14(3),677.
23 Levent A, Yan S, Yoshihisa H. Energy & Fuels,1999,13(2),287.
24 Li D, Greenfield M. Energy & Fuels,2011,25(8),3698.
25 Li D, Greenfield M. Fuel,2014,115(1),347.
26 Lu X, Kalman B, Redelius P. Fuel,2008,87(8),1543.
27 Oldenburg T, Huang H, Donohoe P, et al. Organic Geochemistry,2004,35(6),665.
28 Rappe A, Casewit C, Colwell K, et al. Journal of the American Chemical Society,1992,114(25),10024.
29 Sun H. Journal of Physical Chemistry B,1998,102(38),7338.
30 Sun H, Ren P, Fried J. Computational and Theoretical Polymer Science,1998,8(1-2),229.
31 Sun H, Jin Z, Yang C, et al. Journal of Molecular Modeling,2016,22(2),47.
32 George A K, Friesner R, et al. Journal of Physical Chemistry B,2001,105(28),6474.
33 Van G, Billeter S, Eising A, et al. Biomolecular simulation, Washington DC,1996.pp.1.
34 Zhang L, Greenfield M. Energy & Fuels,2007,21(3),1712.
35 Zhang L, Greenfield M. Energy & Fuels,2008,22(5),3363.
36 Li D, Greenfield M. Fuel,2014,115(1),347.
37 Ding Y, Huang B, Xiang S, et al. Fuel,2016,174,267.
38 Sun D, Sun G, Zhu X, et al. Fuel,2018,211(1),609.
39 Ding Y, Tang B, Zhang Y, et al. Journal of Materials in Civil Enginee-ring,2015,27(8),401.
40 Wang P. Interfacial enhancement mechanism and rheological properties of composited polymer modified asphalt with carbon nanotubes. Ph.D. Thesis, Harbin Institute of Technology, China,2017(In Chinese).
王鹏.碳纳米管/聚合物复合改性沥青界面增强机制及流变特性研究.博士学位论文,哈尔滨工业大学,2017.
41 Xu M. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamics simulation. Master's Thesis, Harbin Institute of Technology, China,2015(in Chinese).
许勐.基于分子动力学模拟的沥青再生剂扩散机理分析.硕士学位论文,哈尔滨工业大学,2015.
42 Yao H, Dai Q, You Z. Fuel,2016,164,83.
43 Xie S J. Molecular dynamics simulation study on the glass transition be-havior of polymers. Ph.D. Thesis, Jilin University, China,2015(in Chinese).
谢士杰.聚合物玻璃化转变行为的分子动力学模拟研究.博士学位论文,吉林大学,2015.
44 He M J, Zhang H D, Chen W X. Polymer physics (third edition), Fudan University Press, China,2009(in Chinese).
何曼君,张红东,陈维孝.高分子物理(第三版),复旦大学出版社,2009.
45 Williams M, Landel R, Ferry J. Journal of America Chemistry Society,1955,77(14),3701.
46 Doi M, Edwards S. The theory of polymer dynamics, Oxford University Press, USA,1986.
47 MüllerP. Physical Review E,2002,66(1),4894.
48 Zhang Y, Xiong C, Ling T. Journal of Civil, Architectural & Environmental Engineering,2010,32(6),55.
49 Xu G, Wang H. Computational Materials Science,2016,112,161.
50 Wang P, Dong Z, Tan Y, et al. Energy & Fuels,2015,29(1),150.
51 Painter P. In: Strategic Highway Research Program. Washington, DC,1993,pp.1.
52 Daniel J, Kim Y. Journal of Materials in Civil Engineering,2001,13(6),434.
53 Wool R, O'Connor K. Journal of Applied Physics,1981,52(10),5953.
54 Gennes P. Journal of Chemical Physics,1971,55(2),572.
55 Bhasin A, Bommavaram R, Greenfield M, et al. Journal of Materials in Civil Engineering,2011,23(4),485.
56 Shen S, Lu X, Liu L, et al. Construction & Building Materials,2016,126,197.
57 Sun D, Lin T, Zhu X, et al. Computational Materials Science,2016,114,86.
58 Wang P, Zhai F, Dong Z. Energy & Fuels,2018,32(2),1179.
59 Wang P, Dong Z, Tan Y, et al. Materials & Structures,2017,50(1),17.
60 Meng L. The effects of asphalt fractional composition on properties. Ph.D. Thesis, Texas A&M University, USA,1996.
61 Tan Y, Wang J, Feng Z, et al. China Journal of Highway and Transport,2008,21(1),19(in Chinese).
谭忆秋,王佳妮,冯中良,等.中国公路学报,2008,21(1),19.
62 Ye F, Sun D, Huang P, et al. China Journal of Highway and Transport,2006,19(6),35(in Chinese).
叶奋,孙大权,黄彭,等.中国公路学报,2006,19(6),35.
63 Mohamed A. Characterization and design of recycled asphalt concrete mixture using indirect tensile test methods. Ph.D. Thesis, The University of Texas at Austin, USA,1982.
64 Clainepetersen J , Ronald G. Road Materials and Pavement Design,2011,12(4),25.
65 Robertson R. In: National Research Council. Washington DC, USA,1991.pp.1.
66 Pan J, Tarefder R. Molecular Simulation,2016,42(8),667.
67 Xu G, Wang H. Fuel,2017,188,1.
68 Xu M, Yi J, Qi P, et al. Energy & Fuels,2019,33,3187.
69 Qu X, Liu Q, Guo M, et al. Construction and Building Materials,2018,187,718.
70 Shen J. Asphalt and asphalt mixture road performance, China Communication Press, China,2001(in Chinese).
沈金安.沥青及沥青混合料路用性能,人民交通出版社,2001.
71 Xu G, Wang H. Computational Materials Science,2016,112,161.
72 Xu G, Wang H. Construction & Building Materials,2016,121,246.
73 Mullins O C. Energy & Fuels,2010,24(4),2179.
74 Yen. In:Symposium on Chemistry & Characterization of Asphalts. Wa-shington DC, USA,1990,pp.1.
75 Gaëlle A, Neil B, Mullins O. Langmuir,2012,21(7),2728.
76 Wei Y, Cao Z, Zhao D. Journal of Fushun Petroleum Institute,2000,20(3),31(in Chinese).
卫一龙,曹祖宾,赵德智.辽宁石油化工大学学报,2000,20(3),31.
77 Andreatta G, Bostrom N, Mullins O C. Springer, USA,2007.
78 Tan Y Q. Asphalt and asphalt mixture, China Communications Press, China,2009(in Chinese).
谭忆秋.沥青与沥青混合料,人民交通出版社,2009.
79 Behnood A, Modiri G.European Polymer Journal,2019,112,766.
80 Yu X, Kong B, Yang X. Annals of the Entomological Society of America,2008,63(1),197.
81 Frisch U, Hasslacher B, Pomeau Y. Physical Review Letters,1986,56(14),1505.
82 Hoogerbrugge P, Koelman J. Europhysics Letters,1992,19(3),155.
83 Espanol P, Warren P. Europhysics Letters,1995,30(4),191.
84 Zhang S. Meso-scale on heavy crude oil system. Ph.D. Thesis, Institute of Process Engineering Chinese Academy of Sciences, China,2012(in Chinese).
张胜飞.重质油体系的介观模拟研究.博士学位论文,中国科学院过程工程研究所,2012.
85 Zhang S, Sun L, Xu J, et al. Energy & Fuels,2010,24(8),4312.
86 Klein M, Shinoda W. Science,2008,321(5890),798.
87 Smit B, Hilbers P, Esselink K, et al. Nature,1990,348(6302),624.
88 Venturoli M, Sperotto M, Kranenburg M, et al. Physics Reports,2006,437(1),1.
89 Marrink S, Vries A, Mark A. Journal of Physical Chemistry B,2004,108(2),750.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[3] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[4] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[5] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[6] 童涛涛, 李宗利, 杜向琴, 李波, 刘恒杰. 水化硅酸钙层间水吸附规律及其对分子结构的影响[J]. 材料导报, 2020, 34(16): 16049-16054.
[7] 何亮, 黄胡端, Wim Van den bergh, Tóth Csaba, 高杰, Karol Kowalski, Jan Valentin. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101.
[8] 寇佩佩, 冯瑞成, 李海燕, 李龙龙, 王茂茂, 祁永年. 孔洞对含Nb单晶γ-TiAl合金力学性能的影响[J]. 材料导报, 2020, 34(14): 14140-14146.
[9] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[10] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[11] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[12] 王煜烨, 汤爱涛, 潘荣剑, 潘复生. 分子动力学在镁及镁合金微观塑性变形中的应用进展[J]. 材料导报, 2019, 33(19): 3290-3297.
[13] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[14] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[15] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed