Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14140-14146    https://doi.org/10.11896/cldb.19070089
  金属与金属基复合材料 |
孔洞对含Nb单晶γ-TiAl合金力学性能的影响
寇佩佩1, 2, 冯瑞成1, 2, 李海燕1, 2, 李龙龙1, 2, 王茂茂1, 2, 祁永年1, 2
1 兰州理工大学机电工程学院, 兰州 730050
2 兰州理工大学数字制造技术与应用省部共建教育部重点实验室, 兰州 730050
Effects of Voids on Mechanical Property of Single Crystal γ-TiAl Alloys Containing Nb
KOU Peipei1, 2, FENG Ruicheng1, 2, LI Haiyan1, 2, LI Longlong1, 2, WANG Maomao1, 2, QI Yongnian1, 2
1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Digital Manufacturing Technology and Application, the Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7635KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分子动力学方法研究了孔洞尺寸、数量以及位置对含Nb单晶γ-TiAl合金力学性能的影响,分析了材料内部的微观缺陷演化及其与材料力学性能之间的关系。结果表明:Nb元素的加入提高了单晶γ-TiAl合金的屈服强度和弹性模量;随孔洞尺寸和数量的增加,含Nb单晶γ-TiAl合金的屈服强度依次减小,这主要是因为孔洞在拉伸过程中充当位错源的作用,它为位错的形核和发射提供了条件;多个孔洞平行于拉伸方向分布时,材料的屈服应力最大,垂直于拉伸方向分布时,材料的屈服应力最小,最容易导致材料失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
寇佩佩
冯瑞成
李海燕
李龙龙
王茂茂
祁永年
关键词:  γ-TiAl合金  分子动力学  孔洞  力学性能  位错    
Abstract: The effects of void size, number and position on the mechanical properties of single crystal γ-TiAl alloys containing Nb were studied by mole-cular dynamics method. The relationship between the micro-defect evolution inside the material and the change of the mechanical properties of the material was analyzed. The results indicate that the yield strength and elastic modulus of single crystal γ-TiAl alloys are increased with the addition of Nb element. With the increase of void size and number, the yield strength of single crystal γ-TiAl alloys containing Nb decreases in sequence, which is mainly due to the voids as a dislocation source in the stretching process, which provides conditions for the nucleation and emission of dislocations. When several voids are distributed parallel to the tensile direction, the yield stress of the material is the largest. And when the distribution of the voids perpendicular to the tensile direction, the yield stress of the material is the smallest, which is the most likely to lead to the failure of the material.
Key words:  γ-TiAl alloys    molecular dynamics    void    mechanical property    dislocation
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51865027;51665030);兰州理工大学红柳一流学科建设项目
作者简介:  寇佩佩,兰州理工大学硕士研究生,主要研究结构和材料强度。
冯瑞成,兰州理工大学博士、副教授,主要从事加工表面完整性评估、结构和材料强度的研究。
引用本文:    
寇佩佩, 冯瑞成, 李海燕, 李龙龙, 王茂茂, 祁永年. 孔洞对含Nb单晶γ-TiAl合金力学性能的影响[J]. 材料导报, 2020, 34(14): 14140-14146.
KOU Peipei, FENG Ruicheng, LI Haiyan, LI Longlong, WANG Maomao, QI Yongnian. Effects of Voids on Mechanical Property of Single Crystal γ-TiAl Alloys Containing Nb. Materials Reports, 2020, 34(14): 14140-14146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070089  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14140
1 Alberto Jesús Palomares-García, Maria Teresa Pérez-Prado, Molina-Aldareguia J M. Acta Materialia, 2017, 123,102.
2 Kastenhuber M, Rashkova B, Clemens H, et al. Intermetallics, 2017, 80,1.
3 Rui R C, De S Z, Teng F M, et al. Ultrasonics Sonochemistry, 2017, 38,120.
4 Shi Q L, Hong S D, et al. Nanoscale, 2018, 10,11365.
5 Xuan L I, Bao H G, Xiu L I, et al. Hot Working Technology, 2017, 24,25.
6 Qi W, Rui R C, Xue G, et al. Metallurgical and Materials Transactions A, 2018, 49,4555.
7 Tian S G, Lv X X, Yu H C, et al. Materials Science and Engineering A, 2015, 651,490.
8 Paul J D H, Appel F, Wagner R. Acta Materialia, 1998, 46(4),1075.
9 Lin L, Li B S, Zhu G M, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(10),72.
10 Jun Y U, Mao D K, Ya H L, et al. Foundry Technology, 2018, 39(11),196.
11 Liu G Y. Journal of Atomic and Molecular Physics, 2004, 21(1),377(in Chinese).
刘光勇. 原子与分子物理学报, 2004, 21(1),377.
12 Ding J, Wang J, Huang X, et al. Materials Reports B: Research Papers, 2018, 32(9),76(in Chinese).
丁军, 汪建, 黄霞, 等. 材料导报:研究篇, 2018, 32(9),76.
13 Feng R, Mao M W, Li H, et al. Materials, 2019, 12(1),184.
14 Xiao T X, Fu L T, Hong T X. Computational Materials Science, 2015, 107,58.
15 Elkhateeb M G, Shin Y C. Materials & Design, 2018, 155,161.
16 Jing P, Yuan L, Shivpuri R, et al. Plast, 2018, 100,122.
17 Feng X F. MD simulation of the effect of nanocrystalline voids on γ-TiAl polycrystalline tensile deformation. Master's Thesis, Xiangtan University, China, 2016(in Chinese).
奉新锋. 晶内纳米孔洞对γ-TiAl多晶拉伸变形影响的MD模拟. 硕士学位论文, 湘潭大学, 2016.
18 Feng R, Song W, Li H, et al. Materials, 2018, 11(6),1025.
19 Tan J, Sinno T, Diamond S. Journal of Computational Science, 2017, 25,89.
20 Zope R R, Mishin Y. Physical Review B, 2003, 68(2),366.
21 Farkas D, Jones C. Modelling and Simulation in Materials Science and Engineering, 1996, 4(1),23.
22 Stukowski, Alexander. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1),015012.
23 Luo D C, Zhang L, Fu R, et al. Rare Metal Materials and Engineering, 2018, 47(3), 853(in Chinese).
罗德春, 张玲, 付蓉, 等. 稀有金属材料与工程, 2018, 47(3),853.
24 Tang F L, Cai H M, Bao H W, et al. Computational Materials Science, 2014, 84,232.
25 Fang H, Chen R, Gong X, et al. Advanced Engineering Materials, 2018, 20(4),1.
26 Feng R C, Li L L, Li H Y, et al. Strength of Materials, 2019, 51(1),56.
27 Zhang Y, Jiang S, Zhu X, et al. Physica E: Low-dimensional Systems and Nanostructures, 2017, 90,90.
28 Diwu M J, Hu X M. Journal of Physics, 2015, 64(17),1(in Chinese).
第伍旻杰, 胡晓棉. 物理学报, 2015, 64(17),1.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed