Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9003-9011    https://doi.org/10.11896/cldb.19050098
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
稻壳灰应用于水泥混凝土的研究进展
汪知文, 李碧雄
四川大学建筑与环境学院,成都 610065
Research Progress on Application of Rice Husk Ash in Cement and Concrete
WANG Zhiwen, LI Bixiong
College of Architecture and Environment, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 4288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稻壳是21世纪最有潜力的再生资源之一,通过低温燃烧制备的稻壳灰(RHA)含有高纯度的非晶态SiO2,具有较高火山灰活性,可作为水泥基材料的辅助性胶凝材料,这不仅提高了稻壳的附加值,也符合可持续发展绿色建筑的理念。相比于粉煤灰、硅灰、矿渣等市场成熟的掺合料,稻壳灰有两大优势:(1)原材料稻壳储备量大,价廉;(2)非晶质SiO2含量高达90%,火山灰活性可比肩硅灰。
然而稻壳灰对生产燃烧设备要求较高,燃烧控温技术难关及副产物回收技术未完全被攻破,只能用流化床小规模生产,市场供应量低。未来在酸处理后的污水的回收利用方面,流化床设备的改进仍需进一步探索。同时稻壳灰的Si-O键会与减水剂的官能团发生配位反应,削弱减水效果,影响水泥混凝土的相容性,与之匹配的高性能减水剂仍需进一步研发,才有望实现稻壳灰在水泥混凝土中高效且规模化的应用。
稻壳灰由细度约50 nm的SiO2凝胶粒子疏松地粘聚形成,且含有大量纳米尺度的孔隙,这是其具有高火山灰效应的内在原因。通过酸处理的稻壳先经低温燃烧后再高温燃烧,在低于750 ℃的燃烧制度下可获得优质的稻壳灰。稻壳灰比表面积高达50~100 m2/g,使其具有吸附性,吸附自由水会降低混凝土的流动性,提高粘聚性;当稻壳灰的平均粒径小于水泥且掺量为10%~20%时,可以提高混凝土的后期强度及其与钢筋的粘结强度,其耐久性也能得到显著改善。
本文系统梳理了稻壳灰用于水泥基材料的国内外文献,对稻壳灰的理化性质、微观结构、生产制备工艺及其对水泥混凝土各项性能的影响等方面的研究进展进行了介绍,揭示了稻壳灰用于水泥混凝土的工作机理,厘清了该领域尚待进一步探索的问题,旨在为将来稻壳灰再生利用形成完整的生产链提供理论依据和技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪知文
李碧雄
关键词:  稻壳灰  水泥混凝土  火山灰活性  理化性质  生产工艺  工作性能  力学性能  耐久性能    
Abstract: Rice husk is one of the most promising renewable resources in the 21st century, which contains high purity amorphous SiO2 by low-temperature combustion. It has high pozzolanic activity and can be used as an auxiliary cementitious material of cement material. As a substitute for mineral admixture, rice husk ash(RHA) is used in concrete, which conforms to the concept of sustainable development. Compared with fly ash, silica ash, slag, RHA has two advantages: (1)high yield and low price ; (2)amorphous SiO2 is up to 90%.
On the other hand, RHA need strict requirements for combustion equipment, and the difficulties of combustion temperature control and by-product recovery technology have not been completely broken, so it can only be produced in fluidized bed on a small scale, and the market supply is low. In the future, the improvement of fluidized bed equipment should be further explored for the recovery and utilization of sewage after acid treatment. At the same time, the Si-O bond will coordinate with the functional group of water reducer.
RHA is formed by loose cohesion of SiO2 gel-particles with fineness of 50 nm and contains a large number of nanometeral pores. The best physicochemical properties of RHA can be obtained by the combustion system of "low temperature before high temperature" after acid treatment. The specific surface area of RHA is as high as 50—100 m2/g, which makes it adsorbable. The adsorption will reduce the mobility of concrete and improve the cohesion of concrete. When the average particle size of RHA is smaller than that of cement and the content of rice husk ash is 10%—20%, the later strength of concrete and its bond strength with steel bar can be improved, and its durability can also be significantly improved.
In this paper, massive literatures of RHA used in cement materials is systematically combed, and the physical and chemical properties, microstructure, production and preparation technology of RHA and its influence on the properties of concrete are introduced. This paper reveals the working mechanism of RHA used in cement concrete, clarifies the problems that need to be further explored in this field, and points out the direction for the research of RHA used in concrete, besides it provides theoretical basis and technical support for the regeneration and utilization of RHA to form a complete production chain in the future.
Key words:  rice husk ash    cement and concrete    pozzolanic properties    physicochemical properties    production technique    workability    mechanical properties    durability
                    发布日期:  2020-04-27
ZTFLH:  TU52  
通讯作者:  libix@126.com   
作者简介:  汪知文,2018年6月毕业于重庆大学材料科学与工程学院,获得工学学士学位。现为四川大学建筑与环境学院硕士研究生,在李碧雄教授的指导下进行研究。目前主要研究领域为稻壳灰的建材资源化利用。
李碧雄,1992年毕业于成都科技大学土木系获工业与民用建筑专业学士学位,1995年毕业于四川联合大学水电学院获岩土工程硕士学位,2005年开始攻读四川大学岩土工程博士学位。2005年起担任土木系系主任。主要从事结构工程抗震、结构健康检测、新型墙体材料研发、混凝土耐久性等的研究工作。近年来,参与多项国家自然基金项目和国家自然基金重大项目,主持教育部科研项目1项,发表论文多篇。
引用本文:    
汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
WANG Zhiwen, LI Bixiong. Research Progress on Application of Rice Husk Ash in Cement and Concrete. Materials Reports, 2020, 34(9): 9003-9011.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050098  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9003
1 国家粮食交易中心. 国家统计局关于2018年粮食产量的公告. http://www.grainmarket.com.cn/Publish/014/14014/14014002/info.html,2018-12-18.
2 王红彦,王道龙,李建政,等.江苏农业科学,2012(1),298.
3 Hu Y Z, Liu F X. Materials Review,2014,28(S1),348 (in Chinese).
胡云珍,刘凤侠.材料导报,2014,28(S1),348.
4 Xia L H, Huang B Y, Zhang F Q, et al. Materials Review,2008,22(5),107(in Chinese).
夏莉红,黄伯云,张福勤,等.材料导报,2008,22(5),107.
5 曾小平.科技风,2018(21),120.
6 Cook D J, Pama R P, Paul B K. Building and Environment,1977,12(4),281.
7 James J, Rao M S. Cement and Concrete Research,1986,16(1),67.
8 Rodrigues F A, Monteiro P J M. Journal of Materials Science Letters,1999,18(19),1551.
9 Jauberthie R, Rendell F, Tamba S, et al. Construction and Building Materials,2000,14(8),419.
10 陈健中.化学建材,1988(4),16.
11 赵铁军.硅酸盐建筑制品,1995(1),41.
12 Ou Y D, Chen K. Journal of the Chinese Ceramic Society,2003,31(11),1121(in Chinese).
欧阳东,陈楷.硅酸盐学报,2003,31(11),1121.
13 Ren S X. Research on the comprehensive utilization of rice husk. Master’s Thesis, Jilin University, China,2009(in Chinese).
任素霞.稻壳资源的综合利用研究.硕士学位论文,吉林大学,2009.
14 Krishnarao R V, Subrahmanyam J, Kumar T J. Journal of the European Ceramic Socity,2001,21(1),99.
15 Gong X Q, Liu J S, Xin S S, et al. Journal of Wuhan Polytechnic University,2018,37(1),51(in Chinese).
龚晓强,刘杰胜,邢珊珊,等.武汉轻工大学学报,2018,37(1),51.
16 Yao X W, Xu K L. Proceedings of the CSEE,2016,36(6),1633(in Chinese).
姚锡文,许开立.中国电机工程学报,2016,36(6),1633.
17 Yu Y X, Li J Z, Cao M B, et al. Concrete,2016(6),57(in Chinese).
佘跃心,李锦柱,曹茂柏,等.混凝土,2016(6),57.
18 Le H T. Behaviour of rice husk ash in self-compacting high performance concrete. Ph.D. Thesis, Bauhaus University Weimar, Germany,2015.
19 Liu Y Y, Zhou G Q, Li J Z, et al. Concrete,2017(9),89(in Chinese).
刘宇翼,周国庆,李锦柱,等.混凝土,2017(9),89.
20 Mistry R, Karmakar S, Roy T K. Road Materials and Pavement Design,2019,20(4),979.
21 Vidal A V, Araujo R, Freitas J. Journal of Cleaner Production,2018,204,292.
22 Msinjili N S, Schmidt W, Rogge A, et al. Cement and Concrete Compo-sites,2017,83,202.
23 Park K B, Kwon S J, Wang X Y. Construction and Building Materials,2016,105(3),196-205.
24 Venkatanaryanan H K, Rangaraju P R. Cement and Concrete Composites,2015,55,348.
25 Sua-iam G, Makul N. Construction and Building Materials,2013,38(156),455.
26 Safiuddin M, West J S, Soudki K A. Construction and Building Mate-rials,2012,30(30),833.
27 Habeeb G A, Bin Mahmud H. Materials Research-Ibero-American Journal of Materials,2010,13(2),185.
28 Zhang Y, She Y X, Cao M B, et al. Journal of Huaiyin Institute of Technology,2019,28(1),20(in Chinese).
张颖,佘跃心,曹茂柏,等.淮阴工学院学报,2019,28(1),20.
29 桂冠.建材发展导向,2017(20),79.
30 Liu C, He Z H. Bulletin of the Chinese Ceramic Society,2016,35(8),2543(in Chinese).
刘春,何智海.硅酸盐通报,2016,35(8),2543.
31 Dai M, Wang H Y. Architecture Technology,2015,46(12),1107(in Chinese).
代梅,王红瑛.建筑技术,2015,46(12),1107.
32 Wan H W, Liu L, Chen W. Journal of Wuhan University of Technology,2011,33(7),32(in Chinese).
万惠文,刘离,陈伟.武汉理工大学学报,2011,33(7),32.
33 Feng Q G, Yang L F, Chen Z, et al. Journal of Wuhan University of Technology,2005,27(2),17(in Chinese).
冯庆革,杨绿峰,陈正,等.武汉理工大学学报,2005,27(2),17.
34 Ou Y D. Journal of Agro-environmental Science,2003,22(3),374(in Chinese).
欧阳东.农业环境科学学报,2003,22(3),374.
35 Li S. New Building Materials,2018,45(8),18(in Chinese).
李胜.新型建筑材料,2018,45(8),18.
36 Olutoge F A, Adesina P A. Construction and Building Materials,2019,196,386.
37 Sun Q W, Xu K J, Guo Y Q. China Ceramics,2012,48(7),1(in Chinese).
孙庆文,许珂敬,郭彦青.中国陶瓷,2012,48(7),1.
38 Msinjili N S, Schmidt W, Rogge, et al. Cement and Concrete Composites,2017,83,202.
39 Mehta A, Siddique R. Journal of Cleaner Production,2018,205,49.
40 Umasabor R I, Okovido J O. Heliyon,2018,4(12),e1035.
41 Gill A S, Siddique R. Construction and Building Materials,2017,157,51.
42 Kang S, Hong S, Moon J. Cement and Concrete Research,2019,115,389.
43 Zhen C B, Ding H Z, Dou Z Y, et al. Chongqing Architecture,2018,17(3),58(in Chinese).
郑传宝,丁华柱,都增延,等.重庆建筑,2018,17(3),58.
44 Li S J, Qian H P, Huang X H. Concrete,2017(8),81(in Chinese).
李书进,钱红萍,黄小红.混凝土,2017(8),81.
45 Zhang J S, Zhao Y H, Jiang Y J. Journal of Dalian Maritime University,2017,43(2),123(in Chinese).
张吉松,赵颖华,蒋治鑫.大连海事大学学报,2017,43(2),123.
46 Lv Y X, Ddi J H. Construction Technology,2016,45(3),34(in Chinese).
吕燕霞,戴俊辉.施工技术,2016,45(3),34.
47 Yuan J F, Liu B, Dong X J. Journal of Lanzhou University of Technology,2015,41(6),143(in Chinese).
袁继峰,刘彬,董晓进.兰州理工大学学报,2015,41(6),143.
48 Ming Y, Li J, Zhang K F, et al. China Concrete and Cement Products,2014(5),88(in Chinese).
明阳,李杰,张凯峰,等.混凝土与水泥制品,2014(5),88.
49 Zhan L, Guo L P. China Concrete and Cement Products,2014(10),12(in Chinese).
詹兰, 郭丽萍.混凝土与水泥制品,2014(10),12.
50 Liang S Q, Sun B C. Concrete,2009(2),73(in Chinese).
梁世庆,孙波成.混凝土,2009(2),73.
51 Bao Z G. Ready-mixed Concrete,2010(7),48(in Chinese).
包志刚.商品混凝土,2010(7),48.
52 GB 175-2007, Common portland cement, China Standard Press, China,2007(in Chinese).
GB175-2007,通用硅酸盐水泥,中国标准出版社,2007.
53 Krishnarao R V, Subrahmanyam J, Kumar T J. Journal of the European Ceramic Society,2001,21(1),99.
54 Cai R H. Preparation of high active rice husk silica and it’s application to the super high performance concrete. Master’s Thesis, Jinan University, China,2008(in Chinese).
蔡瑞环.高活性稻壳SiO2的制备及其在超高性能混凝土中的应用.硕士学位论文,暨南大学,2008.
55 GB/T 51003-2014, Technical code for application of mineral admixture, China Building IndustryPress, China,2014(in Chinese).
GB/T 51003-2014,矿物掺合料应用技术规范,中国建筑工业出版社,2014.
56 蒲心诚,王勇威.混凝土,2002(2),3.
57 He L X, Yin J, Tian D M, et al. Natural Science Journal of Xiangtan University,2016,38(2),23(in Chinese).
何凌侠,尹健,田冬梅,等.湘潭大学自然科学学报,2016,38(2),23.
58 Giaccio G, Rodriguez de sensale G, Zerbino R. Cement and Concrete Composites,2007,29(7),566.
59 Ahmed Y M Z, Ewais E M, Zaki Z I. Journal of University of Science and Technology Beijing,2008,15(3),307.
60 Zerbino R, Giaccio G, Isaia G C. Construction and Building Materials,2011,25(1),371.
61 Swaminathen A. International Journal of Applied Engineering Research,2016,11(1),656.
62 欧阳东.中国建材,2003(6),42.
63 Yan W P, Lu X, Shen Y, et al. Journal of Engineering for Thermal Energy and Power,2010,25(2),234(in Chinese).
阎维平, 鲁许鳌,沈冶,等.热能动力工程,2010,25(2),234.
64 Ramezanianpour A A, Mahdikhani M, Ahmadibeni G. International Journal of Civil Engineering,2009,7(2),83.
65 Blickenstaff J, Foster M. Transactions of the Indian Institute of Metals,2012,65(1),63.
66 Fu W R, Fang J, Guo S, et al. Guangdong Chemical Industry,2017,44(22),7(in Chinese).
付文人,方俊,郭坤,等.广东化工,2017,44(22),7.
67 Bie R, Song X, Liu Q, et al. Cement and Concrete Composites,2015,55,162.
68 Mehta P K. Journal of the American Concrete Institute,1977,74(9),440.
69 Lu F, Wang Y Q, Zhang J, et al. Energy Research and Utilization,2009(5),10(in Chinese).
陆飞,王永桥,章静,等.能源研究与利用,2009(5),10.
70 Li H T, Li B X, Xu Y N, et al. Transactions of the Chinese Society for Agricultural Machinery,2013,44(4),131(in Chinese).
李洪涛,李炳熙,徐有宁,等.农业机械学报,2013,44(4),131.
71 Masia A A T, Buhre B J P, Gupta R P, et al. Fuel Processing Technology,2007,88(11-12),1071.
72 Chandrasekhar S, Satyanarayana K G, Pramada P N, et al. Journal of Materials Science,2003,38(15),3159.
73 Yao X W, Xu K L. Transactions of the Chinese Society of Agricultural Engineering,2015,31(24),250(in Chinese).
姚锡文,许开立.农业工程学报,2015,31(24),250.
74 Zhou X Y, Hu X F. Materials Review,2009,23(S1),462(in Chinese).
周潇雨,胡小芳.材料导报,2009,23(S1),462.
75 Real C, Alcala M D, Criado J M. Journal of the American Ceramic Society,2010,79(8),2012.
76 Feng Q G, Yamamichi H, Shoya M, et al. Cement and Concrete Research,2004,34(3),521.
77 Zhang H, Zhao X, Ding X, et al. Bioresource Technology,2010,101(4),1263.
78 Ma X, Zhou B, Gao W, et al. Powder Technology,2012,217,497.
79 Yao X W, Xu K L. Transactions of the Chinese Society of Agricultural Engineering,2015,31(19),208(in Chinese).
姚锡文,许开立.农业工程学报,2015,31(19),208.
80 欧阳东.超高强混凝土及其第六组分的研究.硕士学位论文,华南理工大学,1997.
81 Chen P, Wu A, Bie R S. Journal of Harbin Institute of Technology,2019,51(3),1(in Chinese).
陈佩,吴奥,别如山.哈尔滨工业大学学报,2019,51(3),1.
82 Yu Q J, Zhao S Y, Feng Q G, et al. Journal of Wuhan University of Technology,2003,25(1),15(in Chinese).
余其俊,赵三银,冯庆革,等.武汉理工大学学报,2003,25(1),15.
83 Khan M N N, Jamil M, Karim M R, et al. Research Journal of Applied Sciences, Engineering and Technology,2015,9(12),1119.
84 Zain M F M, Islam M N, Mahmud F, et al. Construction and Building Materials,2011,25(2SI),798.
85 Viet-thien-an V, Rossler C, Bui D, et al. Construction and Building Materials,2013,43,208.
86 任静,郑秀华.低温建筑技术,2009,31(7),8.
87 Ismail M S, Waliuddin A M. Construction and Building Materials,1996,10(7),521.
88 Nehdi M, Duqette J, El Damatty A. Cement and Concrete Research,2003,33(8),1203.
89 Ou Y D, Chen K. Journal of Chinese Electron Microscopy Society,2003,22(5),390(in Chinese).
欧阳东,陈楷.电子显微学报,2003,22(5),390.
90 Huang Z Y, Zhang C B. Bulletin of the Chinese Ceramic Society,2015,34(7),1736(in Chinese).
黄政宇,张猜兵.硅酸盐通报,2015,34(7),1736.
91 Li Z G, Zhang Y F, Wang X P, et al. Bulletin of the Chinese Ceramic Society,2013,32(6),1017(in Chinese).
李振国,张亚芬,王小鹏,等.硅酸盐通报,2013,32(6),1017.
92 Ikpong A A, Okpala D C. Building and Environment,1992,27(1),105.
93 El-dakroury A, Gasser M S. Journal of Nuclear Materials,2008,381(3),271.
94 Wang W H, Meng Y F, Wang D Z, et al. Concrete,2017(8),66(in Chinese).
王维红,孟云芳,王德志,等.混凝土,2017(8),66.
95 Park K, Kwon S, Wang X. Construction and Building Materials,2016,105,196.
96 Ha T L, Ludwig H. Materials and Design,2016,89,156.
97 Zhuang Y Z, Zhen H B, Ji D, et al. China Concrete and Cement Pro-ducts,2012(6),10(in Chinese).
庄一舟,郑海彬,季韬,等.混凝土与水泥制品,2012(6),10.
98 Givi A N, Rashid S A, Aziz F N A, et al. Construction and Building Materials,2010,24(11),2145.
99 Alex J, Dhanalakshmi J, Ambedkar B. Construction and Building Mate-rials,2016,127,353.
100 Nguyen V T, Ye G, Van Breugel K, et al. Construction and Building Materials,2011,25(4),2030.
101 Ou Y D. Industrial Construction,2003,33(11),46(in Chinese).
欧阳东.工业建筑,2003,33(11),46.
102 陈涛.江西建材,2015(19),60.
103 De Sensale G R. Cement and Concrete Composites,2006,28(2),158.
104 Xu L L, Wu K, Wang P M, et al. Journal of the Chinese Ceramic Society,2016,44(8),1098(in Chinese).
徐玲琳,吴凯,王培铭,等.硅酸盐学报,2016,44(8),1098.
105 Ma C, Gao Y, Fan M M,et al. Journal of Harbin Engineering University,2016,37(7),986(in Chinese).
马聪,高义,范明星,等.哈尔滨工程大学学报,2016,37(7),986.
106 Hidalgo A. Journal of Thermal Analysis and Calorimetry,2009,96(2),335.
107 Fernandez-jimenez A, Vazquez T, Palomo A. Journal of the American Ceramic Society,2011,94(4),1297.
108 Chen X W, Wang S Z, Shi Y, et al. Bulletin of the Chinese Ceramic Society,2015,34(8),2171(in Chinese).
程小伟,王升正,时宇,等.硅酸盐通报,2015,34(8),2171.
109 Li Z G, Xu K J. New Building Materials,2010(11),15(in Chinese).
李智广,许珂敬.新型建筑材料,2010(11),15.
110 Guo X L, Shi H S, Xia M. Journal of Functional Materials,2016,47(11),11001(in Chinese).
郭晓潞,施惠生,夏明.功能材料,2016,47(11),11001.
111 Feng Q G, Yang Y, Dong Z F, et al. Journal of the Chinese Ceramic Society,2008,36(A1),136(in Chinese).
冯庆革,杨义,童张法,等.硅酸盐学报,2008,36(A1),136.
112 Yu Q J, Zhao S Y, Feng Q G, et al. Journal of Wuhan University of Technology,2003,25(2),15(in Chinese).
余其俊,赵三银,冯庆革,等.武汉理工大学学报,2003,25(2),15.
113 Hu H M, Ma B G. Journal of Wuhan University of Technology,2004,26(3),19(in Chinese).
胡红梅,马保国.武汉理工大学学报,2004,26(3),19.
114 Saraswathy V, Song H. Construction and Building Materials,2007,21(8),1779.
115 Khan R, Jabbar A, Ahmad I, et al. Construction and Building Mate-rials,2012,30,360.
116 Huang P F, Bao Y W, Yao Y. Cement and Concrete Research,2005,35(3),584.
117 Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, et al. Construction and Building Materials,2007,21(6),1356.
118 Ye G, Nguyen V T. Journal of the Chinese Ceramic Society,2012,40(02),212(in Chinese).
叶光,Nguyen V T.硅酸盐学报,2012,40(2),212.
119 Daud N N N, Daud M N M, Muhammed A S, et al. In: ICSTEM 2017-8th International Conference on Science, Technology, Engineering and Management. Al Rigga, Dubai,2017,pp.23.
120 Shang X, Meng Y F. Journal of Water Resources and Architectural Engineering,2014,12(2),213(in Chinese).
尚鑫,孟云芳.水利与建筑工程学报,2014,12(2),213.
121 Hu W X, Huang W, Qin H G. Industrial Construction,2014,44(10),113(in Chinese).
胡维新,黄伟,秦鸿根.工业建筑,2014,44(10),113.
[1] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[2] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[5] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[6] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[7] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[8] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[9] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[10] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[11] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[12] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[13] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[14] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[15] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed