Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5120-5126    https://doi.org/10.11896/cldb.18100188
  金属与金属基复合材料 |
高熵合金强韧化的研究进展
谭雅琴1, 王晓明2, 朱胜2, 乔珺威1
1 太原理工大学材料科学与工程学院,高熵合金研究中心,太原 030024;
2 装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072
Research Progress on Strengthening and Ductilizing High-Entropy Alloys
TAN Yaqin1, WANG Xiaoming2, ZHU Sheng2, QIAO Junwei1
1 Research Center for High-entropy Alloys, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
下载:  全 文 ( PDF ) ( 4247KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金拥有优异的力学性能,包括高强度、高硬度、良好的耐蚀性和耐磨性等,作为结构材料应用极具潜力。对高熵合金力学性能优化的研究尽管仍处于探索阶段,但已经引起了广泛关注并取得了一些成果。
  传统上合金的强化机制可分为固溶强化、位错强化、细晶强化和第二相强化。考虑到高熵合金倾向于形成固溶体,固溶强化是一种行之有效的强化机制。可通过加入其中一种主元或者与主元半径差不多的元素形成置换固溶体(通常是过渡金属元素);也可以加入小半径元素如C、N、B等形成间隙固溶体。热机械处理是金属材料常见的预处理工艺,通过轧制等压力加工手段和再结晶退火能够很明显地提高位错密度以及细化晶粒尺寸,从而实现高熵合金的强韧化。第二相强化是近年来比较流行的强化方式。热力学分析可以有效帮助确定退火温度以获得第二相颗粒,甚至控制第二相的尺寸和形貌。位错与第二相颗粒以切过机制或绕过机制发生交互作用,从而提高合金的力学性能。除通过改变内部组织来提升性能外,通过表面处理也可实现强韧化。对塑性较好的高熵合金进行渗碳、渗氮和镀膜等处理通常可以获得表硬内韧的组织结构。渗碳渗氮对表层的硬化源于间隙固溶和第二相析出,镀膜的优化效果则源于膜与基体的紧密结合,可以同时表现出两者的性能优势。
  本文主要从内在强化机理的角度出发,论述了添加组元、热处理工艺等对高熵合金的强韧化效果。此外,还介绍了几种典型的表面处理对高熵合金强韧化的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭雅琴
王晓明
朱胜
乔珺威
关键词:  高熵合金  力学性能  强韧化  固溶强化  位错强化  细晶强化  第二相强化  表面强化  热机械处理  渗碳  渗氮  镀膜    
Abstract: High-entropy alloys (HEAs) have displayed promising application potential as structural materials owing to their excellent mechanical properties, such as high strength, high hardness, good corrosion and wear resistance. The research upon mechanical properties optimization for HEAs has provoked considerable attention and some preliminary achievements have been made.
  Traditionally, the strengthening mechanisms of alloys can be classified as solid-solution strengthening, dislocation hardening, grain-boundary strengthening and secondary-phase hardening. Because HEAs have high tendency to form solid solution, solid-solution strengthening is consi-dered as a major and effective way for HEAs. In this regard, we can use one of the principal elements or an element similar to other principal elements to generate substitution solid solution. Or we can add some atoms with small radius, such as C, N, and B, so the lattice distortions can be obtained. Thermo-mechanical techniques, as commonly used prior treatment method, are also applicable for HEAs, in which cold-rolling, for-ging, recrystallization annealing, etc. all can significantly increase dislocation density and refine grains. In addition, there is a more prevailing way in recent years-secondary-phase hardening. We can easily determine the annealing temperature by thermodynamic analysis to obtain secondary phase particles, and even to control their size and morphology. Thus HEAs' mechanical properties can be improved due to the interaction between dislocations and secondary phase particles, with either shearing mechanism or Orowan-bypassing mechanism. Apart from changing internal structure, surface treatment is also helpful in strengthening and ductilization. For HEAs with fine plasticity, carburizing & nitriding and coating generally facilitate to obtaining the structure with hard surface and ductile interior. The hardening effect of carburizing & nitriding stems from interstitial solid solution and secondary phase precipitation, while the role of coating process depends on the strong adhesion between coating and alloy substrate.
  This paper gives an elaborate description of strengthening and ductilizing effects of element doping and thermal treatment on HEAs, from the perspective of internal enhancing mechanism. It also involves some typical surface treatment methods favorable for mechanical improvement of HEAs.
Key words:  high-entropy alloys (HEAs)    mechanical properties    strengthening and ductilization    solid-solution strengthening    dislocation har-dening    grain-boundary strengthening    secondari-phase hardening    surface strengthening    thermo-mechanical treatment    carburizing    nitriding    coating
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TG135  
基金资助: 装甲兵工程学院装备再制造技术国防科技重点实验室资助(61420050204);北京科技大学新金属材料国家重点实验室开放课题资助(2016-ZD03)
通讯作者:  qiaojunwei@gmail.com   
作者简介:  谭雅琴,2015年6月毕业于陕西科技大学,获得工学学位。现为太原理工大学材料科学与工程学院硕士研究生,在乔珺威教授的指导下进行研究。目前主要研究的课题是热机械处理对高熵合金微观组织和力学性能的影响;乔珺威,太原理工大学材料科学与工程学院教授、博士生导师。2005年7月本科毕业于石家庄铁道大学(原军校)材料科学与工程学院,2011年1月在北京科技大学新金属材料国家重点实验室取得博士学位,期间赴美国田纳西大学进行联合培养。主要从事亚稳态金属材料力学与物理性能的研究。目前已在材料类期刊发表SCI收录科研论文120余篇,包括Materials Science and Engineering Report、Progress in Mate-rials Science、International Journal of Plasticity、Acta Materialia、Applied Phy-sics Letters等。
引用本文:    
谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
TAN Yaqin, WANG Xiaoming, ZHU Sheng, QIAO Junwei. Research Progress on Strengthening and Ductilizing High-Entropy Alloys. Materials Reports, 2020, 34(5): 5120-5126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100188  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5120
1 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016,19,349.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
3 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
4 Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Switzerland, 2016.
5 Miracle D B, Senkov O N, Acta Materialia, 2017, 122, 448.
6 Zhu C, Lu Z P, Nieh T G, Acta Materialia, 2013, 61, 2993.
7 Ma Y, Wang Q, Jiang B B, et al. Acta Materialia, 2018, 147, 213.
8 Zhao Y J, Qiao J W, Ma S G, et al. Materials & Design, 2016, 96, 10.
9 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
10 Zhou Y J, Wang Y L, Chen G L, et al. Applied Physics Letters, 2007, 90, 181904.
11 Li C, Li J C, Zhao M, et al. Journal of Alloys and Compounds, 2010, 504, S515.
12 Kao Y F, Chen T J, Chen S K, et al. Journal of Alloys and Compounds, 2009, 488, 57.
13 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
14 Chuang M H, Tsai M H, Wang W R,et al. Acta Materialia, 2011, 59, 6308.
15 Hemphill M A, Yuan T, Wang G Y, et al. Acta Materialia, 2012, 60, 5723.
16 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18, 1758.
17 Rohr F V, Winiarski M J, Tao J, et al. Proceedings of the National Aca-demy of Sciences of the United States of America, 2016, 113, E7144.
18 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10, 534.
19 Yang X, Zhang Y, Materials Chemistry and Physics, 2012, 132, 233.
20 Zhang C., Zhu C, Harrington T, et al. Scripta Materialia, 2018, 154, 78.
21 Ma L L, Wang L, Nie Z, et al. Acta Materialia, 2017, 128, 12.
22 Joseph J, Jarvis T, Wu X, et al. Materials Science and Engineering: A, 2015, 633, 184.
23 Li Z M, Tasan C C, Pradeep K G, et al. Acta Materialia, 2017, 131, 323.
24 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
25 Ranganathan S. Current Science, 2003, 85, 1404.
26 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
27 Wang W, Zhang Z, Niu J, et al. Materials Today Communications, 2018, 16, 242.
28 Joseph J, Stanford N, Hodgson P, et al. Journal of Alloys and Compounds, 2017, 726, 885.
29 Wang W R, Wang W L, Wang S C, et al. Intermetallics, 2012, 26, 44.
30 Wang Z, Baker I, Cai Z, et al. Acta Materialia, 2016, 120, 228.
31 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering: A, 2018, 716, 150.
32 Li Z M, Tasan C C, Springer H, et al. Scientific Report, 2017, 7, 40704.
33 Lei Z F, Liu X J, Wu Y, et al. Nature, 2018, 563, 546.
34 Wang Z, Gao M C, Ma S G, et al. Materials Science and Engineering: A, 2015, 645, 163.
35 Hou J X, Zhang M, Yang H J, et al. Metals, 2017, 7, 111.
36 Ma S G, Qiao J W, Wang Z H, et al. Materials & Design, 2015, 88, 1057.
37 Yasuda H Y, Miyamoto H, Cho K, et al. Materials Letters, 2017, 199, 120.
38 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4 174.
39 Bonisch M, Wu Y, Sehitoglu H, Scientific Reports, 2018, 8, 1.
40 Rao J C, Diao H Y, Ocelík V, et al. Acta Materialia, 2017, 131, 206.
41 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102 187.
42 Wang Z G, Zhou W, Fu L M, et al. Materials Science and Engineering: A, 2017, 696, 503.
43 Jia B, Liu X, Wang H, et al. Science China Technological Sciences, 2017, 61, 179.
44 Hadraba H, Chulup I, Dlouhy A, et al. Materials Science and Enginee-ring: A, 2019,689,252.
45 Zhang L J, Jiang Z K, Zhang M D, et al. Journal of Alloys and Compounds, 2018, 769, 27.
46 Li Z, Sun R W, Fu H Y, et al. Journal of Functional Materials, 2016, 6(47), 190(in Chinese).
李哲, 张伟强, 孙日伟, 等. 功能材料, 2016, 6(47), 190.
47 Nishimoto A, Fukube T, Maruyam T, Surface and Coatings Technology, 2019,376,52.
48 Tang W Y, Chuang M H, Chen H Y, et al. Surface and Coatings Technology, 2010, 204, 3118.
49 Qiao J W, Wang Z, Ren L W, et al. Materials Science and Engineering: A, 2016, 657, 353.
50 Cao J W, Han J G, Guo Z H, et al. Materials Science and Engineering: A, 2016, 673, 141.
51 Xia Z H, Zhang M, Zhang Y, et al. Intermetallics, 2018, 94, 65.
[1] 郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
[2] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[3] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[4] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[5] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[6] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[7] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[8] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[9] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[10] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[11] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[12] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[13] 刘诚, 何兴会, 全锋, 谢昕芸, 孙庆斌, 廖静, 曲曙光. 大尺寸件氧化铝陶瓷与可伐合金的钎焊封接工艺研究[J]. 材料导报, 2019, 33(Z2): 202-205.
[14] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[15] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed