Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3157-3164    https://doi.org/10.11896/cldb.19010032
  金属与金属基复合材料 |
Co-Al-W基高温合金发展概述
马启慧,王清,董闯
大连理工大学材料科学与工程学院,大连116000
Co-Al-W-based Superalloys: a Summary of Current Knowledge
MA Qihui,WANG Qing,DONG Chuang
School of Material Science and Engineering,Dalian University of Technology,Dalian 116000,China
下载:  全 文 ( PDF ) ( 10022KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统Co基高温合金的强化机制为固溶强化与碳化物强化,强化效果弱于Ni基高温合金中的有序相γ′强化,从而使得Co基高温合金的应用受到限制。直到2006年,在Co-Al-W三元相图中发现稳定的L12相——Co3(Al,W),这种新型γ′相强化的Co-Al-W基高温合金有以下特点:(1)含Ta合金熔点高于Waspaloy合金;(2)硬度与屈服强度不低于Ni基高温合金;(3)γ/γ′两相之间的晶格错配度与Ni基高温合金在数值上接近,符号上相反,而正的晶格错配度更有利于蠕变性能。综上所述,Co3(Al,W)相的发现为Co基高温合金的发展开辟了新道路。自2006年以来,针对Co-Al-W基高温合金的组织与性能进行了大量研究。Co-Al-W基高温合金的微观组织为γ/γ′两相,此外还会存在一些二次相,其中包括富集Al和Ti元素的B2-CoAl相、富集难熔元素的拓扑密堆相m-Co7W6以及易在时效过程析出的c-Co3W相。这些二次相通常在晶界析出,容易成为裂纹的发源地,同时会弱化固溶强化效果,对合金的高温性能不利。虽然Co-Al-W基高温合金得到了立方形态的γ′相共格析出,但由于γ′-Co3(Al,W)相高温稳定性差,需要对其进行合金化,因此,这种γ′相强化的Co基高温合金正在由简单的Co-Al-W三元合金发展成为复杂的多元合金。综合来看,主要添加的合金化元素有Ta、Ti、Nb、V、Mo、Ni和Cr。其中,γ′相形成元素包括Ta、Ti、Nb、V、Mo,这些元素的分配系数均大于1,且能有效提高γ′相固溶温度与体积分数;Cr、Fe、Re的分配系数小于1,是γ相形成元素,添加后均降低γ′相固溶温度,其中Cr会提高γ′相的体积分数。众多合金元素中,Cr、Mo和Ni元素的过量添加会降低γ/γ′两相间的晶格错配度,从而改变γ′相形态甚至破坏γ/γ′两相组织。合金的组织与性能密切相关,γ/γ′两相、γ′相为立方形态且γ′相高温稳定性高的合金具有优异的性能。Co-Al-W基高温合金的流变应力随温度变化分为三个阶段:首先随温度升高而降低;然后随温度升高而异常升高;最后再次随温度升高而降低。故而存在峰值温度与峰值强度,Co基高温合金多应用在峰值温度下,以便获得最高的屈服强度。此外,由于Co-Al-W基高温合金中γ/γ′两相晶格错配度为正,在蠕变过程中会出现平行于拉应力的筏化,对合金的高温性能有利。除了Ta、Ti等元素能强化合金外,少量B元素的添加有晶界强化作用,可以提高合金的力学性能。添加Cr元素的Co-Al-W基高温合金在高温氧化过程中会形成三层氧化层,分别是最外层的Al2CoO4、富Cr并含有Cr2O和Cr2O3的中间层以及最内层的Al2O3。其中Cr2O3和Al2O3氧化层均致密且具有保护作用,可显著提高合金的抗氧化能力。本文简单介绍了Co-Al-W基高温合金的发现与发展,综述了近年来Co-Al-W基高温合金的研究现状,并指明了未来Co基高温合金的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马启慧
王清
董闯
关键词:  Co-Al-W基高温合金  γ′析出相  合金化  固溶强化    
Abstract: The strengthening mechanism of conventional Co-based superalloy usually include solid-solution strengthening and carbide strengthening, the reinforcement effect of which are weaker than the ordered phase γ′-strengthened of Ni-base superalloys, and this making its application limited. Stable Co3(Al,W) phase with L12 structure of Co-Al-W alloy was firstly discovered in 2006, and has many characteristics: (1) Ta-containing Co-Al-W alloys possess higher melting point than Waspaloy; (2) hardness and yield strength of Co-Al-W alloys are no less than those of Ni-base superalloys; (3) lattice mismatch between γ and γ′ is similar to that of Ni-base superalloys in numerical value and opposite in symbol, which is benefit to creep-resistance properties. Therefore the discovery of Co3(Al,W) phase supports potential for the further development of Co-base superalloys.
The microstructure and properties of Co-Al-W-based superalloys have been widely investigated since 2006. In addition to γ and γ′ two phases, there are also some second phases in Co-Al-W-base alloys including B2-CoAl phase enriching in Al and Ti, topologically close-packed phase μCo7W6 enriching in refractory elements, and χ-Co3W phase likely precipitated during aging. These second phases tend to precipitate at grain boundary, which is easy to become the source of cracks. At the same time, they weaken the effect of solid solution strengthening, and deteriorate the high temperature properties of alloys.
The cuboidal coherent γ′ phases are obtained in Co-Al-W-based alloys, however, they need to be alloying because of unstability of γ′ phase. As a result, this kind of γ′-strengthening Co-based superalloys are developed from simple Co-Al-W ternary alloys to complicated multi-component alloys. The alloying elements being added to Co-Al-W-based alloys include Ta, Ti, Nb, V, Mo, Ni and Cr. Among these elements, Ta, Ti, Nb, V and Mo are γ′-forming elements, which have partitioning coefficient greater than 1 and attribute to improve solvus temperature and volume fraction of γ′ phase; Cr, Fe and Re are γ-forming elements with partitioning coefficient less than 1 and reducing γ′ solvus temperature, especially, Cr can improve volume friction of γ′ phase. Besides, the excessive addition of Cr, Ni and Mo will reduce lattice misfit between γ′ and γ, resulting in transformation of shape of γ′ phase and destruction of microstructure of γ/γ′.
It is noted that properties are closely related to microstructure, therein, the cuboidal and stable γ′ phase precipitated in γ phase usually make alloys display excellent properties. The temperature dependence of the flow stress of Co-Al-W-based alloys can be divided into three stages: firstly, flow stress decreases with the increase of temperature; secondly, there is an anomalous positive temperature variation where the flow stress substantially increase with temperature; finally, it backs to a negative temperature variation. So there are peak temperature and peak stress, alloys applied in peak temperature will have high strength. Besides, because of positive lattice misfit of Co-Al-W-based alloys. Moreover, during creep process, rafting parallel to tensile stress is beneficial to performance under high temperature owing to positive lattice misfit of Co-Al-W-based alloys. As for as elements, except Ta and Ti, a small amount of B element will improve mechanical properties by grain boundary strengthening. Cr-containing Co-Al-W-based alloys will form three oxide layers during oxidation under high temperature: outermost layer includes Al2CoO4, the middle layer includes Cr2O and Cr2O3 and innermost layer consisting of Al2O3. It is reported that compact and productive Cr2O3 and Al2O3 can improve oxidation resistance.
This paper presents discovery and development of Co-Al-W-based superalloys. Then, the research status of Co-Al-W-based superalloys is summarized. Finally, the future progress of Co-based superalloy are proposed.
Key words:  Co-Al-W-based superalloy    γ′ precipitated phase    alloying    solid-solution strengthening
                    发布日期:  2020-01-03
ZTFLH:  TG13  
基金资助: 国家自然科学基金航空重大研究计划培育项目(91860108);国家自然发展基金(11674045)
通讯作者:  dong@dlut.edu.cn   
作者简介:  马启慧,2016年6月毕业于郑州大学,获得工学学士学位。现为大连理工大学材料科学与工程学院硕士研究生,在董闯教授的指导下进行研究。目前主要研究领域为基于团簇加连接原子模型的Co基高温合金的成分设计;董闯,大连理工大学材料科学与工程学院教授、博士研究生导师。1988年7月本硕科毕业于大连理工大学材料科学与工程学院,1991年7月在法国洛林国立理工大学材料学院取得博士学位,1992—1994年分别在法国南锡矿业学院和中国科学院北京电子显微镜重点实验室进行博士后研究工作。先后获得国家教委科技进步一等奖、辽宁省青年科技拔尖人才、国家百千万人才工程、大连市优秀专家、国务院颁发的政府特殊津贴、中国青年科技奖、辽宁省十大杰出青年、中国大陆高引用SCI论文奖、辽宁省青年学科带头人、教育部长江奖励计划特聘教授等。主要从事载能束材料改性、准晶及非晶材料、合金相成分设计、材料微结构。近年来,著有《准晶材料》(1998,国防工业出版社),发表论文100余篇,SCI引用总次为530,单篇最高为94次。申请专利4项。建立了准晶材料研究室。6次在国际会议上做邀请报告,多次任会议组委,作为会议主席组织过3次区域性国际会议和3次全国会议。在法国、美国、德国、印度等国做过20多场学术报告,建立了广泛的国际科研合作,多次出访。
引用本文:    
马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
MA Qihui,WANG Qing,DONG Chuang. Co-Al-W-based Superalloys: a Summary of Current Knowledge. Materials Reports, 2020, 34(3): 3157-3164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010032  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3157
1 Sims C T.Superalloys: Genesis and character. Superalloy II. John Wiley & Sons, America, 1987.
2 Wang H Y, An Y Q, Li C Y, et al.Materials Review B: Research Papers, 2011, 25(9),482(in Chinese).
王会阳, 安云岐, 李承宇, 等.材料导报:研究篇, 2011, 25(9),482.
3 Guo J T.Superalloy material science (Applied basic theory), Science Press, China, 2008(in Chinese).
郭建亭. 高温合金材料学(应用基础理论), 科学出版社, 2008.
4 Morral F R.Journal of Metals, 1968, 20(7), 52.
5 Guo J T.Superalloy material science (Superalloy materials and engineering applications), Science Press, China, 2010(in Chinese).
郭建亭.高温合金材料学(高温合金材料与工程应用), 科学出版社, 2010.
6 Cao R, Zhang H Y, Liu G H, et al.Material Science & Engineering A, 2018, 714, 68.
7 Blaise J M, Viatour P, Drapier J M. Cobalt, 1970, 49, 192.
8 Viatour P, Drapier J M, Coutsouradis D.Cobalt, 1973, 3, 67.
9 Drapier J M, Brouwer J L, Coutsouradis D.Cobalt, 1965, 27,59.
10 Drapier J M, Coutsouradis D.Cobalt, 1968, 39,63.
11 Sato J, Omori T, Oikawa K, et al.Science, 2006, 312,90.
12 Toshihiro O, Yuji S, Katsunari O, et al.Journal of Material and Metallurgy, 2005, 4(2),120.
13 Dutkiewicz J, Kostorz G.Acta Metallurgica et Materialia, 1990, 38(11),2283.
14 Dutkiewicz J, Kostorz G.Material Science and Engineering: A, 1991, 132,267.
15 Massalski T B, Okamoto H, Subramanian, et al. Binary alloy phase diagrams, ASM International, US, 1990.
16 Neumeiar S, Rehman H U, Neuner J, et al.Acta Materilia, 2006, 106, 304.
17 Wang Y J, Wang C Y.Applied Physics Letters, 2009, 94(26),261909.
18 Yoo M H.Acta Metallurgica, 1987, 35(7),1559.
19 Meher S, Yan H Y, Nag S, et al.Scripta Materialia, 2012, 67(10),850.
20 Pyczak F, Bauer A, Göken M, et al. Journal of Alloys and Compounds, 2015, 632,110.
21 Kazuya Shinagawa, Toshihiro Omori, Jun Sato, et al.Materials Transactions, 2008, 49(6), 1474.
22 Bauer A, Neumeier S, Pyczak F, et al.In:12th International Symposium on Superalloys. Chengdu, 2012,pp.695.
23 Meher S, Banerjee R.Intermatallics, 2014, 49(2),138.
24 Zhou H J, Xue F, Chang H, et al.Journal of Materials Science & Techno-logy, 2018, 34(5),799.
25 Bauer A, Neumeier S, Pyczak F, et al.Materials Science and Engineering A, 2012, 550 (12),333.
26 Povstugar I, Choi P P, Neumeier S, et al. Acta Materialia, 2014,78(4),78.
27 Shi L, Yu J J, Cui C Y, et al.Materials Letters, 2015, 149,58.
28 Suzuki A, Pollock T M. Acta Materialia, 2008, 56(6),1288.
29 Ooshima M, Tananka K, Okamoto N L, et al. Journal of Alloys and Compounds, 2010, 508(1),71.
30 Xue F, Wang M L, Feng Q.In:12th International Symposium on Superalloys. Chengdu, 2012,pp.813.
31 Bauer A, Neumeier S, Pyczak F, et al.Scripta Materialia, 2010, 63(12), 1197.
32 Xue F, Zhou H J, Wang M L, et al. Materials Letters, 2013, 112(112),21.
33 Xue F, Zhou H J, Feng Q.The Mineral, Metals & Materials Society, 2014,66(12),2486.
34 Yan H Y, Votontsov V A, Dye D. Intermetallics, 2014, 48,44.
35 Bocchini P J, Sudbrack C K, Noebe R D, et al. Materials Science & Engineering A, 2017, 705, 122.
36 Tanaka K, Ooshima M, Tsuno N, et al. Philosophical Magazine, 2012, 92(32), 4011.
37 Povstugar I, Zenk C H, Li R, et al.Materials Science and Technology, 2016, 32(3),220.
38 Sauza D J, Bocchini P J, Dunand D C, et al. Acta Materialia, 2016, 117, 135.
39 Xue F. Effect of Ta and Ti on microstructure stability and creep behavior of novel γ′ strengthened Co-base single crystal superalloy. Ph.D. Thesis, University of Science and Technology Beijing, China, 2015(in Chinese).
薛飞. 钽和钛对新型钴基单晶高温合金组织稳定性欲高温蠕变行为的影响研究. 博士学位论文, 北京科技大学, 2015.
40 Titus M S, Suzuki A, Pollock T M. In:12th International Symposium on Superalloys. Chengdu, 2012,pp.823.
41 Li X H, Gan B, Feng Q, et al.Journal of University of Science and Technology Beijing, 2008, 30(12),1369(in Chinese).
李相辉, 甘斌, 冯强, 等. 北京科技大学学报, 2008, 30(12), 1369.
42 Omori T, Oikawa K, Sato J, et al. Intermetallics, 2013, 32(2), 274.
43 Yan H Y, Vorontsov V A, Coakley J, et al.In:12th International Symposium on Superalloys. Chengdu, 2012,pp.705.
44 Tsukamoto Y, Kobayashi S, Takasugi T. Materials Science Forum, 2010, 654-656,448.
45 Kazantseva N V, Demakov S L, Yurovskikh A S, et al.The Physics of Metals and Metallography, 2016, 117(7), 702.
46 Miura S, Ohkubo K, Mohri T.Material Transactions, 2007, 78(8), 2403.
47 Xue F, Wang M L, Feng Q.Materials Science Forum, 2011, 686, 388.
48 Bocchini P J, Lass E A, Moon K W, et al.Scripta Materialia, 2013, 68(8),563.
49 Lass E A, Williams M E, Campbell C E, et al.Journal of Phase Equilibria & Diffusion, 2014, 35(6), 711.
50 Kobayashi S, Tsukamoto Y, Takasugi T. Intermetallic, 2012, 31,94.
51 Kobayashi S, Tsukamoto Y, Takasugi T. Intermetallics, 2011, 19, 1908.
52 Bocchini P J, Sudbrack C K, Noebe R D, et al.Materials Science & Engineering A, 2017, 705, 122.
53 Ma J Q, Zhong F, Li S S, et al.Rare Metals, 2017, 36(12), 1.
54 Chen M, Wang C Y.Scripta Materialia, 2009, 60(8),659.
55 Chen M, Wang C Y. Physics Letter A, 2010, 374(31),3238.
56 Ross E W, Sims C T.Superalloys Ⅱ, A Wiley-Interscience Publication, UK, 1987.
57 Mughrabi Haël.Acta Materialia, 2014, 81(81), 21.
58 Meher S, Nag S, Tiley J, et al. Acta Materialia, 2013, 61(11), 4266.
59 Yan H Y, Coakley J, Vorontsov V A, et al.Material Science & Enginee-ring A, 2014, 613(34), 201.
60 Zenk C H, Neumeier S, Stone H J, et al.Intermetallics, 2014, 55(55), 28.
61 Michael S Titus, Akane Suzuki, Tresa M Pollock.Scripta Material, 2012, 66(8), 574.
62 Pyczak F, Bauer A, Göken M, et al.Material Science & Engineering A, 2013, 571(12), 13.
63 Vorontsov V A, Barnard J S, Rahman K M, et al.Acta Materialia, 2016, 120, 14.
64 Xue F, Zhou H J, Chen Q J, et al.In:EUROSUPERALLOYS 2014-2nd European Symposium on Superalloys and their Applications. Hyeres, France, 2014, pp.15002.
65 Shi L, Yu J J, Cui C Y, et al. Material Science & Engineering A, 2015, 635, 50.
66 Wang X G. Mechanical behavior of Ni-base single crystal superalloys.Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Science, China, 2015 (in Chinese).
王新广. 两种镍基单晶高温合金力学行为的研究. 博士学位论文, 中国科学院金属研究所, 2015.
67 Haruyuki I, Oohashi T, Norihiko L O, et al. Materials Science Forum, 2010, 638.
68 Suzuki A, DeNolf G C, Pollock T M. Scripta Materialia, 2007, 56(5), 385.
69 Zhong F, Li S S, Sha J B. Material Science & Engineering A, 2015, 637,175.
70 Shinagawa K, Omori T, Oikawa K, et al. Scripta Materialia, 2009, 61(6), 612.
71 Coakley J, Lass E A, Ma D, et al. Acta Materialia, 2017, 136, 118.
72 Mughrabi H, Ott M, Tetzlaff U. Material Science & Engineering A, 1997, 234(97), 434.
73 Xue F, Zhou H J, Shi Q Y, et al. Scripta Material, 2015, 97, 37.
74 Pollock T M, Dibbern J, Tsunekane M, et al. JOM, 2010, 62(1), 58.
75 Klein L, Bauer A, Neumeier S, et al. Corrosion Science, 2011, 53(5), 2027.
76 Klein L, Shen Y, Killian M S, et al. Corrosion Science, 2011, 53(9), 2713.
77 Klein L, Killian M S, Virtanen S, et al. Corrosion Science, 2013, 69(6), 43.
78 Yan H Y, Vorontsov V A, Dye D. Corrosion Science, 2014, 83(83), 382.
79 Zhong F, Fan F, Li S S, et al. Progress in Natural Science, Material International, 2016, 26(1), 600.
80 Klein L, Bartenwerffer B V, Killian M S, et al. Corrosion Science, 2014, 79(8), 29.
[1] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[2] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[5] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[6] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[7] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[8] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[9] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[10] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[11] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[12] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[13] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[14] 刘第强, 贾建刚, 高昌琦, 王建宏. 机械化学合成Ni2Al3/Al2O3去合金化制备Raney-Ni/Al2O3复合粉体[J]. 材料导报, 2018, 32(6): 957-960.
[15] 付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed