Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 473-482    https://doi.org/10.11896/j.issn.1005-023X.2018.03.019
     材料综述 |
多孔非晶合金及其复合材料的制备技术研究进展
付正容,王修昌,金青林,谭军
昆明理工大学材料科学与工程学院,昆明 650093
A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites
Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 3076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

多孔非晶合金材料是结合金属泡沫和非晶合金两者的优点发展起来的一类新型结构和/或功能材料,实现了轻质与强韧的完美统一。近年来国内外研究者对多孔非晶合金及其复合材料产生了极大的兴趣,这是因为它们有极优异的物理和化学性能,如高强度、低弹性模量、高的弹性应变和高的耐腐蚀性。简要综述了多孔非晶合金及其复合材料的制备技术研究进展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付正容
王修昌
金青林
谭军
关键词:  多孔非晶合金  熔体  渗流  非晶粉末  粉末烧结  去合金化  过冷液相区    
Abstract: 

Porous amorphous alloy is an emerging structural and/or functional material combined the both advantages of metallic foams and glassy alloys, which has reflected the light-weight, high-strength, and large-toughness are unified. Recently,porous amorphous alloys and their composites have exert tremendous fascination on researchers at home and abroad because of their excellent physical and chemical properties,such as high strength, low elastic modulus,high elastic strains,high corrosion resistance, and so on. In this paper,the research progress of porous amorphous alloys and their composites have been summarized.

Key words:  porous amorphous alloys    melt    infiltration    amorphous powder    powder sintering    dealloying    supercooled li-quid region
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TG14  
基金资助: 国家自然科学基金(51301078);国家自然科学基金(51461026);教育部博士点基金(20135314120002);昆明理工大学材料科学与工程学院优秀青年拔尖人才计划(20140102)
作者简介:  付正容:女,1993年生,硕士研究生,主要从事亚稳态材料研究 E-mail: 965208232@qq.com|谭军:通信作者,男,博士,副教授,主要从事亚稳态材料研究 E-mail: tanjuncn@gmail.com
引用本文:    
付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites. Materials Reports, 2018, 32(3): 473-482.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.019  或          http://www.mater-rep.com/CN/Y2018/V32/I3/473
Ingredient Porosity/% Aperture/μm E/GPa σ/MPa ε/% Year Reference
Pd43Ni10Cu27P20 84 100—1 000 2003 [11]
Pd42.5Cu30Ni7.5P20 65 125—250 5.2 75 1.8 2003 [12]
Zr57Nb5Cu15.4Ni12.6Al10 60 25—50 2004 [26]
Pd35Pt15Cu30P20 45 200 27 400 >30 2005 [15]
Ti36Y20Al24Co20 0.015—0.155 2006 [45]
Ni59Zr20Ti16Si2Sn3 40 10—50 350 3.25 2006 [49]
Cu47Ti33Zr11Ni8Si1 25 0.02—0.5 2006 [52]
Zr55Cu30Al10Ni5 33.5 16 93 >3 2006 [30]
Zr47Ti13Cu11Ni10Be16Nb3 80 150-200 820 1.3 2007 [31]
Fe48Cr15Mo14Y2C15B6 65 2007 [53]
Zr57Nb5Al10Ni12.6Cu15.4 60.4 50 17 180 >16 2007 [33]
Mg60Cu21Ag7Gd12 57.5 2 000 8.5 109 90 2007 [56]
Zr48Cu36Al8Ag8 13 71 1 390 0.02 2008 [34]
Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 60 45—106 62 70 2009 [25]
Hf44.5Cu27Ni13.5Ti5Al10 62 45—106 80 2012 [57]
Zr41.25Ti13.75Cu12.5Ni10Be22.5 65 30 0.29 2012 [37]
Pd40Cu30Ni10P20 20—550 2012 [22]
Zr56.3Nb5.1Cu15.6Ni12.9Al10 70 45-106 2013 [39]
Zr35Ti30Be26.75Cu8.25 20—550 2013 [44]
Ti45Zr10Cu31Pd10Sn4 60 125—250 2014 [46]
Ti42Zr40Ta3Si15 14 337 52 0.67 2016 [47]
Fe82Nb6B12 23—38 0.12 2017 [55]
表1  各种基体的多孔非晶合金及其复合材料的首次报道年份、孔结构参数及其力学性能
图1  原位气体发生法制备多孔非晶合金的工艺流程
图2  气体注入法制备多孔非晶合金的工艺流程
图3  易溶颗粒渗流铸造法制备多孔非晶合金的工艺流程
图4  粉末烧结法制备多孔非晶合金的工艺流程
图5  孔隙率为70%的Zr55Cu30Al10Ni5多孔非晶合金的SEM形貌图[32]:(a)热压成形泡沫形貌;(b)泡沫的孔结构;(c)泡沫内壁放大图(箭头表明颗粒之间连接的区域)
图6  孔隙率为86%的Pd43Ni10Cu27P20泡沫的压缩应力-应变曲线[17]
图7  烧结多孔样品Zr55Cu30Al10Ni5横截面的SEM形貌图:孔隙率(a)4.7%和(b)33.5%[30]
图8  孔隙度为25%的Cu47Ti33Zr11Ni8Si1多孔金属玻璃SEM形貌图[52]:(a)前驱体抛光横截面图;(b)多孔非晶合金宏观结构;(c)多孔非晶合金横截面;(d)(c)的放大图
图9  Zr58.5Nb2.8Cu15.6Ni12.8Al10.3多孔非晶合金的压缩应力-应变图[25]:(a)由Vit/Cu制备,孔隙率为57%和64%;(b)由Vit/Ni制备,孔隙率为57%和59%;(c)由Vit/W制备,孔隙率为59.5%和63%
图10  去合金化法制备多孔非晶合金的工艺流程
图11  过冷液相区加工法制备多孔非晶合金的工艺流程
1 Kader M A, Islam M A, Hazell P J , et al. Modelling and characterization of cell collapse in aluminium foams during dynamic loading[J]. International Journal of Impact Engineering, 2016,96:78.
2 Wang H, Xiao S G, Zhang T . Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys[J]. International Journal of Minerals,Metallurgy,and Materials, 2016,23(7):835.
3 Daudt Nd F, Bram M , Barbosa A P C,et al.Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment[J]. Journal of Materials Processing Technology, 2017,239:202.
4 Kader M A, Islam M A, Saadatfar M , et al. Macro and micro collapse mechanisms of closed-cell aluminium foams during quasi-static compression[J]. Materials & Design, 2017,118:11.
5 Pia G, Delogu F . Hardening of nanoporous Au foams induced by surface chemistry[J]. Materials Letters, 2017,196:332.
6 Amsterdam E , De Hosson J Th M,Onck P R.On the plastic collapse stress of opencell aluminum foam[J]. Scripta Materialia, 2008,59(6):653.
7 Ashby M F, Greer A L . Metallic glasses as structural materials[J]. Scripta Materialia, 2006,54(3):321.
8 Schuh C A, Hufnagel T C, Upadrasta Ramamurty . Mechanical beha-vior of amorphous alloys[J]. Acta Materialia, 2007,55:4067.
9 Zhou M, Hagos K, Huang H , et al. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing[J]. Journal of Non-Crystalline Solids, 2016,452:50.
10 Trady S, Mazroui M, Hasnaoui A , et al. Molecular dynamics study of atomiclevel structure in monatomic metallic glass[J]. Journal of Non-Crystalline Solids, 2016,443:136.
11 Schroers J, Veazey C, Johnson W L . Amorphous metallic foam[J]. Applied Physics Letters, 2003,82(3):370.
12 Wada T, Inoue A . Fabrication,thermal stability and mechanical pro-perties of porous bulk metallic glassy Pd-Ni-Cu-P alloy[J]. Materials Transactions, 2003,44(10):2228.
13 Wada T, Inoue A . Formation of porous Pd-based bulk glassy alloys by a high hydrogen pressure melting-water quenching method and their mechanical properties[J]. Materials Transactions, 2004,45(8):2761.
14 Schroers J, Veazey C, Demetriou M D , et al. Synjournal method for amorphous metallic foam[J]. Journal of Applied Physics, 2004,96(12):7723.
15 Wada T, Takenaka K, Nishiyama N , et al. Formation and mechanical properties of porous Pd-Pt-Cu-P bulk glassy alloys[J]. Materials Transactions, 2005,46(12):2777.
16 Wada T, Kinaka M, Inoue A . Effect of volume fraction and geometry of pores on mechanical properties of porous bulk glassy Pd42.5Cu30-Ni7.5P20 alloys[J]. Journal of Materials Research, 2006,21(4):1041.
17 Demetriou M D, Schramm J P, Veazey C , et al. High porosity metallic glass foam:A powder metallurgy route[J]. Applied Physics Letters, 2007,91(16):161903.
18 Demetriou M D, Veazey C, Schroers J , et al.Expansion evolution during foaming of amorphous metals[J].Materials Science and Engineering:A, 2007, 449- 451:863.
19 Demetriou M D, Veazey C, Schroers J , et al.Thermo-plastic expansion of amorphous metallic foam[J].Journal of Alloys and Compounds, 2007, 434- 435:92.
20 Wada T, Inoue A . Production of bulk glassy alloy foams by high pressure hydrogen[J]. Materials Science and Engineering:A, 2007,447(1-2):254.
21 Demetriou M D, Veazey C, Harmon J S , et al. Stochastic metallic-glass cellular structures exhibiting benchmark strength[J]. Physical Review Letters, 2008,101(14):145702.
22 Xia T, Li N, Wu Y , et al. Patterned superhydrophobic surface based on Pd-based metallic glass[J]. Applied Physics Letters, 2012,101(8):081601.
23 Wang S, Zhang C, Li H , et al. Enhanced electro-catalytic perfor-mance of Pd-based amorphous nanoporous structure synthesized by dealloying Pd32Ni48P20 metallic glass[J]. Intermetallics, 2017,87:6.
24 Cox M E, Mathaudhu S N, Hartwig K T , et al. Amorphous Zr-based foams with aligned,elongated pores[J]. Metallurgical and Materials Transactions A, 2009,41(7):1706.
25 Marchi C S, Brothers A , Dunand D C.Melt infiltration processing of foams using glass-forming alloys[J].Materials Research Society, 2003, 754:CC1. 8. 1.
26 Brothers A H, Dunand D C . Syntactic bulk metallic glass foam[J]. Applied Physics Letters, 2004,84(7):1108.
27 Brothers A H, Dunand D C . Ductile bulk metallic glass foams[J]. Advanced Materials, 2005,17(4):484.
28 Brothers A H, Dunand D C . Plasticity and damage in cellular amorphous metals[J]. Acta Materialia, 2005,53(16):4427.
29 Brothers A H, Scheunemann R , DeFouw J D,et al.Processing and structure of open-celled amorphous metal foams[J]. Scripta Materialia, 2005,52(4):335.
30 Xie G Q, Zhang W , Louzguine-Luzgin D V,et al.Fabrication of porous Zr-Cu-Al-Ni bulk metallic glass by spark plasma sintering process[J]. Scripta Materialia, 2006,55(8):687.
31 Chen X H, Zhang Y, Zhang X C , et al. A porous bulk metallic glass with unidire-ctional opening pores[J]. Electrochemical and Solid-State Letters, 2007,10(12):E21.
32 Qiu K Q, Yu B, Ren Y L . Porous bulk metallic glass fabricated by powder hot pressing[J]. University of Science and Technology Beijing, 2007,14(S1):59.
33 Wada T, Qin F X, Wang X M , et al. Preparation of open-cell porous Zr-based bulk glassy alloy[J]. Materials Transactions, 2007,48(9):2381.
34 Wada T, Wang X M, Kimura H , et al. Preparation of a Zr-based bulk glassy alloy foam[J]. Scripta Materialia, 2008,59(10):1071.
35 Wada T, Wang X M, Kimura H , et al. Supercooled liquid foaming of a Zr-Al-Cu-Ag bulk metallic glass containing pressurized helium pores[J]. Materials Letters, 2009,63(11):858.
36 Qiu K Q, Zhao Y H, Ren Y L , et al. Fabrication and mechanical properties of porous Zr-based bulk metallic glass[J]. The Chinese Journal of Nonferrous Metals, 2009,19(5):900(in Chinese).
36 邱克强, 赵宇航, 任英磊 , 等. Zr基非晶合金多孔材料的制备与性能[J]. 中国有色金属学报, 2009,19(5):900.
37 Wei X, Chen J H, Dai L H . Energy absorption mechanism of open-cell Zr-based bulk metallic glass foam[J]. Scripta Materialia, 2012,66:721.
38 Lin H, Wang H Y, Lu C , et al. A metallic glass syntactic foam with enhanced energy absorption performance[J]. Scripta Materialia, 2016,119:47.
39 Cox M E, Dunand D C . Anisotropic mechanical properties of amorphous Zr-based foams with aligned,elongated pores[J]. Acta Mate-rialia, 2013,61(16):5937.
40 Li J B, Lin H C , Jang J S C,et al.Novel open-cell bulk metallic glass foams with promising characteristics[J]. Materials Letters, 2013,105:140.
41 Li N, Xia T, Heng L , et al. Superhydro-phobic Zr-based metallic glass surface with high adhesive force[J]. Applied Physics Letters, 2013,102(25):251603.
42 Li N, Chen Y, Jiang M Q , et al. A thermoplastic forming map of a Zr-based bulk metallic glass[J]. Acta Materialia, 2013,61(6):1921.
43 Sarac B, Schroers J . Designing tensile ductility in metallic glasses[J]. Nature Communications, 2013,4:2158.
44 Li X, Xu H, Jin Y , et al. Fabrication of highly ordered nanotube layer on Zr-based bulk metallic glass for biomedical uses[J]. Materials Letters, 2017,200:63.
45 Jayaraj J, Park B J, Kim D H , et al. Nanometer-sized porous Ti-based metallic glass[J]. Scripta Materialia, 2006,55(11):1063.
46 Xie G, Qin F, Zhu S , et al. Corrosion behaviour of porous Ni-free Ti-based bulk metallic glass produced by spark plasma sintering in Hanks’ solution[J]. Intermetallics, 2014,44:55.
47 Nicoara M, Raduta A, Parthiban R , et al. Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements[J]. Acta Biomater, 2016,36:323.
48 Sopha H, Pohl D, Damm C , et al. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys[J]. Materials Science Engineering:C, 2017,70:258.
49 Lee M H, Sordelet D J . Synjournal of bulk metallic glass foam by powder extrusion with a fugitive second phase[J]. Applied Physics Letters, 2006,89(2):021921.
50 Yuan L S, Zheng Y X, Jia M L , et al. Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium[J]. Electrochimica Acta, 2015,154:54.
51 Wang X L, Zheng Y X, Jia M L , et al. Formation of nanoporous NiCuP amorphous alloy electrode by potentio-static etching and its application for hydrazine oxidation[J]. International Journal of Hydrogen Energy, 2016,41(20):8449.
52 Lee M H, Sordelet D J . Nanoporous metallic glass with high surface area[J]. Scripta Materialia, 2006,55(10):947.
53 Demetriou M D, Gang D, Veazey C , et al. Amorphous Fe-based metal foam[J]. Scripta Materialia, 2007,57(1):9.
54 Zhang S D, Zhang W L, Wang S G , et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour[J]. Corrosion Science, 2015,93:211.
55 Jin Y, Li R, Xu H , et al. A new strategy to fabricate nanoporous iron-based meta-llic glasses:Selective phase tailoring of amorphous-nanocrystalline composite alloys through electrochemical dissolution[J]. Scripta Materialia, 2017,133:14.
56 Brothers A H, Dunand D C, Zheng Q , et al. Amorphous Mg-based metal foams with ductile hollow spheres[J]. Journal of Applied Phy-sics, 2007,102(2):023508.
57 Cox M E, Kecskes L J, Mathaudhu S N , et al. Amorphous Hf-based foams with aligned,elongated pores[J]. Materials Science and Engineering: A, 2012,533:124.
58 Chen X, Ouyang H W, Huang S C , et al. Production of Al-based amorphous alloy powders by close-coupled gas atomization[J]. Journal of University of Science and Technology Beijing, 2008,30(1):35(in Chinese).
58 陈欣, 欧阳鸿武, 黄誓成 , 等. 紧耦合气雾化制备Al基非晶合金粉末[J]. 北京科技大学学报, 2008,30(1):35.
59 Lu C W, Lu Z C, Sun K , et al. The preparation of Fe74Al4Sn2P10-C2B4Si4 amorphous alloy powders by water atomization and magnetic powder cores performance research[J]. Acta Physica Sinica, 2006,55(5):2553(in Chinese).
59 陆曹卫, 卢志超, 孙克 , 等. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究[J]. 物理学报, 2006,55(5):2553.
60 White R L . The preparation of Nb3Sn superconducting alloying by mechanical alloying[D]. California:Stanford University, 1997.
61 Koch C C, Cavin O B , McKamey C G,et al.Preparation of amorphous Ni60Nb40 by mechanical alloying[J]. Applied Physics Letters, 1983,43:1017.
62 Schwarz R B, Petrich R R, Saw C K . The synjournal of amorphous Ni-Ti alloy powders by mechanical alloying[J]. Journal of Non-Crystalline Solids, 1985,76(2-3):281.
63 Tang S H, Wang H X, Wang Z J , et al. Magnetic properties of amorphous Fe78Si9B13 powder prepared by ribbon crush and powder core using same[J]. Metallic Functional Materials, 2010,17(3):9(in Chinese).
63 唐书环, 王红霞, 王正杰 , 等. 带材破碎制备Fe78Si9B13非晶合金粉末及其磁粉芯性能[J]. 金属功能材料, 2010,17(3):9.
64 黄培云 . 粉末冶金原理[M]. 北京: 冶金工业出版社, 1988: 99.
65 Schafcr L , Fryda M.Chemical vapour deposition of polycrystalline diaond film on high-speed steel[J].Surface Coatings Technology, 1999, 116- 119:447.
66 Silva F J G . Microwave plasma chemical vapour deposition diamond nucleation on ferrous subst rates with Ti and Cr interlayers[J]. Diamond and Related Materials, 2002,11:1617.
67 Fan Q H . Diamond coating on steel with a titanium interlayer[J]. Diamond and Related Materials, 1998,7:603.
68 Chen Y . Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy panicles[J].Catalysis Today,l998, 44(4):15.
69 Qiao M H, Xie S H, Dai W L . Ultrafine Ni-Co-W-B amorphous alloys and their activities in hydrogenation to cyclohexane[J]. Catalysis Letters, 2001,71(3):187.
70 Van Wonterghem J, Morup S, Charles S W . Fonnation of ultrafine amorphous alloy particles by reduction in aqueous solution[J]. Nature, 1986,322(6080):622.
71 张立德 . 纳米材料[M]. 北京: 化学工业出版社, 2000.
72 Saida J, Inoue A, Masumoto T . Effect of reaction condition on composition and properties of ultrafine amorphous powders in(Fe,Co,Ni)-B systems prepared by chemical reduction[J]. Metallurgical Transactions A, 1991,22A(9):2125.
73 Shen J Y, Li Z Y, Yan Q J . Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles[J]. Journals of Physics and Chemistry, 1993,97(32):8504.
74 Linderoth S, Mrap S . Chemically prepared amorphous Fe-B particles:Influence of PH on the composition[J]. Journal of Applied Physics, 1990,67(9):4472.
75 Inoue A, Saida J, Samuoto T . Formation of ultrafine amorphous powders in Fe-M-B(M=transition metal)systems by chemical reduction method and their thermal and magnetic properties[J]. Physical Metallurgy and Materials Science, 1988,19A(9):2315.
76 Hu Z, Chen Y, Hsia Y F . U1trafine amorphous Fe-Ni-B and Fe-P-B Particles[J]. Nuclear Instruments and Methods in Physics Research Section B, 1993,76(4):121.
77 Zhang J G . Properties and structure of ultrafine amorphous Fe-Ni-B powder obtained by borohydride reduction[J]. Journal of Materials Engineering and performance, 1995,4(4):453.
78 DragieVa I, GaVrilo V G, BuchkoV D . The synjournal of boride powders and some of their magnetic properties[J]. Journal of the Less·Common Metals, 1979,67(2):375.
79 Lee S P, Chen Y W . Nitrobenzene hy-drogenation on Ni-P,Ni-B and Ni-P-B ultrafine[J]. Journal of Molecular Catalysis A:Chemical, 2000,152(2):213.
80 Kim T S, Lee J K, Kim H J , et al. Consolidtion of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders[J]. Materials Science Engineering:A, 2005,402:228.
81 Segal V M . Equal channel angular extrusion from macromechanics to structure formation[J]. Materials Science and Engineering:A, 1999,271:322.
[1] 武海良, 杨倩, 张希文, 沈艳琴, 姚一军. EVA基纺织品用热熔胶的形成:组分含量和参数调控[J]. 材料导报, 2019, 33(6): 1070-1073.
[2] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[3] 陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
[4] 刘第强, 贾建刚, 高昌琦, 王建宏. 机械化学合成Ni2Al3/Al2O3去合金化制备Raney-Ni/Al2O3复合粉体[J]. 材料导报, 2018, 32(6): 957-960.
[5] 吴宁, 杨洁, 高杨, 乔志勇, 郑姗姗, 裴晓园, 焦亚男. “龟裂”纳米纤维片/玻纤织物复合预制体的层间渗流特性[J]. 材料导报, 2018, 32(24): 4374-4380.
[6] 张先满, 罗洪峰, 史留勇. 高硼铸钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 65-71.
[7] 刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed