Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23070062-6    https://doi.org/10.11896/cldb.23070062
  无机非金属及其复合材料 |
地层渗流水对凝固过程固井水泥浆的侵扰机理
刘开强1,*, 于骏杰1, 王海平3, 张夏雨2, 金诚1, 张兴国2
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质及开发工程全国重点实验室,成都 610500
3 中国石油集团川庆钻探工程有限公司长庆固井公司,西安 710018
Intrusion Mechanism of Seepage Water on the Cement Slurry During Setting Process
LIU Kaiqiang1,*, YU Junjie1, WANG Haiping3, ZHANG Xiayu2, JIN Cheng1, ZHANG Xingguo2
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
3 Petrochina Chuanqing Drilling Engineering Co., Ltd., Changqing Well Reinforcement, Xi’an 710018, China
下载:  全 文 ( PDF ) ( 3870KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对老区调整井固井水泥浆受地层渗流水侵扰,降低水泥石层间封隔能力和油田开发效益的工程问题,以及渗流水对凝固过程水泥浆侵扰机理认识不清的科学问题,本研究工作建立了一套水泥浆凝固过程渗流水侵扰试验装置,表征了渗出水电导率、水泥石-岩芯的界面胶结状态;并利用低场核磁共振和电学方法,测定凝固过程水泥浆的孔径分布和孔隙连通性,综合分析渗流水对凝固过程水泥浆的侵扰形式和机理。结果表明:地层渗流水会破坏水泥石-岩芯界面结构,在迎水面水泥石-岩芯界面中段形成1~2 mm缝隙;同时,水泥浆在2.5 h至5.5 h的水化阶段中,离子快速溶入并渗出水,使其电导率由261.44 μS/cm增至429.30 μS/cm,与渗入水电导率相比增加了312.0%。凝固过程水泥浆的微观结构逐渐由“分散颗粒结构”发展为“凝胶网架结构”,导致其孔隙压力在数小时内迅速降为零,但该凝固阶段水泥浆内部仍存在大量毛细孔且孔隙连通性高达0.59~0.67,极易诱发渗流水侵入凝固过程水泥浆、置换其孔溶液,基于水泥“溶解-成核-沉淀”水化理论,该过程会破坏水泥浆的水化进程和设计性能,并最终降低水泥石层的间封隔能力和固井质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘开强
于骏杰
王海平
张夏雨
金诚
张兴国
关键词:  调整井固井  水侵机理  地层渗流水  微观结构  电导率  水化行为    
Abstract: There are two major problems inthe cementing engineering of the adjustment wells under seepage water intrusion, the first, in engineer, water intrusion reduces the zone isolation quality of hardened cement-sheath and oilfield development benefit, the second, in science, the intrusion mechanism of the seepage water on the cement slurry during setting process is unclear. Aiming to these, this work established a testing device for seepage water intrusion during cement slurry setting process to record the electrical conductivity of exudate water and bonding state between cement slurry and rock core interface, Low-field NMR and electrical methods were applied to measure the pore size distribution and pore connectivity of the cement slurry during setting process. And then, the intrusion mechanism of the seepage water on the cement slurry during setting process was analyzed. Experimental results showed that the seepage water destroyed the interface bond between hardened cement slurry and rock core to form a gap with 1—2 mm wideth. On the electrical conductivity of the seepage water, because the rapid dissolution of ions in cement slurry into exudate water from 2.5 h to 5.5 h of setting time, the exudate water’s electrical conductivity increased from 261.44 μS/cm to 429.30 μS/cm, increased by 312.0% compared with the water before INFILTRATION. During setting process, the microstructureof cement slurry developed from “dispersed particle structure” to “gel network structure”, which caused pore hydrostatic pressure to drop rapidly to zero within hours. With a hydrated time of 10 h, a large number of connected pores existed and the pore connectivity was 0.59—0.67 in the cement slurry, which was highly susceptible to seepage water intruding to replace its pore solution. Based on “dissolution-nucleation-precipitation” hydration theory, the hydration degree and designed properties of the cement slurry were destroyed. And then decreased the zone isolation quality of hardened cement-sheath and cementing quality.
Key words:  adjustment well cementing    intrusion mechanism    seepage water    microstructure    electrical conductivity    hydration behavior
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TE122.3  
基金资助: 国家自然科学基金(52104007);全国重点实验室开放基金(PLN2023-35)
通讯作者:  * 刘开强,博士,副教授。2021年6月—2023年10月,中国建筑材料科学研究总院,博士后;2020年6月毕业于西南石油大学,获得材料化学工程博士学位;2018年12月—2019年12月赴Monash University公派联合培养。主要从事固井功能材料等方向科研与教学工作,主持国家自然科学基金青年项目、国家重点实验室开发基金和企业合作项目10余项,以第一作者或通讯作者在Composites Part B: Engineering、Cement & Concrete Composites、Construction and Building Materials、Applied Surface Science、Journal of Building Engineering、《石油学报》《油田化学》等国内外学术期刊上发表论文30余篇。 kaiqiangliu@swpu.edu.cn   
引用本文:    
刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
LIU Kaiqiang, YU Junjie, WANG Haiping, ZHANG Xiayu, JIN Cheng, ZHANG Xingguo. Intrusion Mechanism of Seepage Water on the Cement Slurry During Setting Process. Materials Reports, 2024, 38(24): 23070062-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070062  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23070062
1 Xie Q, Yang H, Sun H B, et al. Geophysical Prospecting for Petroleum, 2016, 60(4), 604 (in Chinese).
谢青, 杨浩, 孙恒博, 等. 石油物探, 2021, 60(4), 604.
2 Guo X S. Earth Science, 2022, 47(10), 3511 (in Chinese).
郭旭升. 地球科学, 2022, 47(10), 3511.
3 Ding S D, Tao Q, MA L R. Petroleum Drilling Techniques, 2019, 47(3), 41 (in Chinese).
丁士东, 陶谦, 马兰荣. 石油钻探技术, 2019, 47(3), 41.
4 Sharifi N P, Vandenbossche J M, Iannacchione A T, et al. Journal of Testing and Evaluation, 2022, 51(2), 1.
5 Wang X R, Shen H, Sun B J, et al. Journal of Natural Gas Science and Engineering, 2020, 78, 103316.
6 Gu J, Gan P, Dong L F, et al. Journal of Petroleum Science and Engineering, 2019, 173, 5.
7 Yang C H, Zhang C M, Jin X Z. Oil Drilling & Production Technology, 2011, 33(2), 42 (in Chinese).
杨春和, 张春明, 靳先忠. 石油钻采工艺, 2011, 33(2), 42.
8 Wang H B, Liu K Q, Liao X S, et al. Oil Drilling & Production Techno-logy, 2016, 38(2), 166 (in Chinese).
王海滨, 刘开强, 廖兴松, 等. 石油钻采工艺, 2016, 38(2), 166.
9 Liu K Q, Zhao S X, Li W, et al. Oilfield Chemistry, 2018, 35(1), 16 (in Chinese).
刘开强, 赵殊勋, 李炜, 等. 油田化学, 2018, 35(1), 16.
10 Wang Y C. Drilling & Production Technology, 2021, 44(5), 118 (in Chinese).
王云川. 钻采工艺, 2021, 44(5), 118.
11 Wei T C, Yang Y J, Guo X Y, et al. Oil Drilling & Production Technology, 2015, 37(5), 49 (in Chinese).
韦庭丛, 杨雨佳, 郭小阳, 等. 石油钻采工艺, 2015, 37(5), 49.
12 Liu H T, Liu S Q, Zhang H, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(11), 3536 (in Chinese).
刘慧婷, 刘硕琼, 张华, 等. 硅酸盐通报, 2016, 35(11), 3536.
13 Xu B H, Tang L, Li Z H, et al. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3), 128 (in Chinese).
徐璧华, 唐磊, 李治衡, 等. 西南石油大学学报(自然科学版), 2021, 43(3), 128.
14 Feng Q, Yang X, Peng Z G, et al. Journal of Applied Polymer Science, 2021, 138(24), 1.
15 Teng Z J, Gao J C, Li J H, et al. Oilfield Chemistry, 2019, 36(1), 58 (in Chinese).
滕兆健, 高继超, 李建华, 等. 油田化学, 2019, 36(1), 58.
16 He R, Ma H Y, Hafiz R B, et al. Materials and Design, 2018, 156, 82.
17 Li Q H, Xu S L, Zeng Q. Cement and Concrete Composites, 2016, 70, 35.
18 Zhang Z D, Scherer G W. Cement and Concrete Research, 2019, 120, 13.
19 Zhang Z H, Zhu Y C, Zhu H J, et al. Cement and Concrete Composites, 2019, 96, 194.
20 Cheng X W, Liu K Q, Li Z Y, et al. Journal of Materials in Civil Engineering, 2017, 29(9), 1.
21 D’Orazio F, Tarczon J C, Halperin W P, et al. Journal of Applied Physics, 1989, 65(2), 742.
22 Mitchell J, Monteilhet L, Korb J P, et al. Physical review. E, Statistical, nonlinear, and soft matter physics, 2005, 72(1), 1.
23 Bhattacharja S, Moukwa M, D’Orazio F, et al. Advanced Cement Based Materials, 1993, 1(2), 67.
24 Zhou C S, Ren F Z, Zeng Q, et al. Cement and Concrete Research, 2018, 105, 31.
25 Kurihara R, Maruyama I. Cement and Concrete Research, 2022, 157, 106805.
26 Meiboom S, Gill D. Review of Scientific Instruments, 1958, 29(8), 688.
27 Zhou C S, Ren F Z, Wang Z D, et al. Cement and Concrete Research, 2017, 100, 373.
28 Liu K Q, Cheng X W, Li J X, et al. Composites Part B: Engineering, 2019, 177, 107435.
29 Kong X M, Lu Z C, Zhang C Y. Journal of the Chinese Ceramic Society, 2017, 45(2), 274 (in Chinese).
孔祥明, 卢子臣, 张朝阳. 硅酸盐学报, 2017, 45(2), 274.
30 Liu K Q, Yu J J, Xia Y, et al. Construction and Building Materials, 2022, 340, 127704.
31 Bede A, Scurtu A, Ardelean I. Cement and Concrete Research, 2016, 89, 56.
32 Yin J H, Li W Y, Wang J, et al. Cement and Concrete Research, 2023, 163, 107032.
33 Valori A, Rodin V, McDonald P J. Cement and Concrete Research, 2011, 40(12), 1656.
34 Liu K Q, Cheng X W, Zhang C, et al. Construction and Building Materials, 2019, 214, 382.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[9] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[10] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[11] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[12] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[13] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[14] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[15] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed