Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23070077-7    https://doi.org/10.11896/cldb.23070077
  无机非金属及其复合材料 |
石墨烯纳米复合材料在电化学核酸传感器中的应用
李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕*
中国人民解放军南部战区总医院,广州 510010
Applications of Graphene Nanocomposites in Electrochemical Nucleic Acid Sensors
LI Yating, LIU Zhongming, CHEN Yu, GUO Yantong, YANG Huan, ZHANG Haiyan*
General Hospital of Southern Theatre Command, Guangzhou 510010, China
下载:  全 文 ( PDF ) ( 3845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,各个领域对核酸检测的需求逐渐增加,具有高灵敏度和特异性的核酸分子检测设备的研发也成为当下的研究热点。其中,电化学检测设备具有响应快速、操作简单、携带方便、制作成本低等优势。而对于电化学传感器的研发,其中最重要的部分就是电极材料的选择,石墨烯及其衍生物不仅具有优异的电学、力学和电化学性质,还能够与金属纳米颗粒、金属氧化物、金属有机框架、聚合物和离子液体等形成纳米复合材料。基于这些纳米复合材料的电化学传感器已经在核酸检测中发挥了重要的作用。在此,首先介绍了石墨烯及其衍生物的独特结构特性,之后基于不同石墨烯纳米复合材料对石墨烯电化学传感进行了分类,最后探讨了电化学传感器用于核酸检测的场景,并对石墨烯电化学传感器的发展前景进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚婷
刘仲明
陈钰
郭彦彤
杨欢
张海燕
关键词:  石墨烯  石墨烯氧化物  电化学传感器  核酸  纳米材料    
Abstract: In recent years, the demand for nucleic acid detection is gradually increased in various fields, and the development of nucleic acid molecular detection devices with high sensitivity and specificity has become a hot research nowadays. Among these studies, electrochemical detection devices have the advantages of fast response, simple operation, portability, and low production cost. For the development of electrochemical sensors, one of the most important parts is the selection of electrode materials. Graphene and its derivatives not only have excellent electrical, mechanical, and electrochemical properties, but are also capable of forming nanocomposites with metal nanoparticles, metal oxides, metal organic frameworks, polymers, and ionic liquids. Electrochemical sensors based on these nanocomposites have already played an important role in the detection of nucleic acids. Here, the unique structural properties of graphene and its derivatives are first introduced, followed by a classification of graphene electrochemical sensing based on different graphene nanocomposites, and finally the application scenarios of electrochemical sensors for nucleic acid detection are explored, and the prospects for the development of graphene electrochemical sensors are discussed and looked into.
Key words:  graphene    graphene oxide    electrochemical biosensor    nucleic acid    nanomaterial
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  Q819  
通讯作者:  * 张海燕,广州中医药大学南部战区总医院硕士研究生导师、副主任技师,2002年毕业于广州师范大学,2005年毕业于第一军医大学,2008年毕业于南方医科大学。目前主要从事核酸快速检测、基因芯片在临床疾病诊断中的应用的研究工作,发表论文68篇。曾获国家质量监督检验检疫总局“科技兴检奖”二等奖。获多项国家发明和实用新型专利。 zhanghaiyan1998@126.com   
作者简介:  李亚婷,2020年7月于锦州医科大学获得理学学位,现为广州中医药大学南部战区总医院临床检验诊断学硕士研究生,在导师张海燕的指导下进行研究,目前主要研究领域为生物传感。
引用本文:    
李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
LI Yating, LIU Zhongming, CHEN Yu, GUO Yantong, YANG Huan, ZHANG Haiyan. Applications of Graphene Nanocomposites in Electrochemical Nucleic Acid Sensors. Materials Reports, 2024, 38(24): 23070077-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070077  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23070077
1 Miller M B, Huang A Y, Kim J, et al. Nature, 2022, 604(7907), 714
2 Chaturvedi M, Patel M, Bisht N, et al. Biosensors (Basel), 2023, 13(3), 342.
3 Hwang C, Park N, Kim E S, et al. Biosens Bioelectron, 2021, 185, 113177.
4 Lomae A, Preechakasedkit P, Hanpanich O, et al. Talanta, 2023, 253, 123992.
5 Li Z, Xu H, Li S, et al. Analytica Chimica Acta, 2021, 1159, 338428.
6 Faria H A M, Zucolotto V. Biosens Bioelectron, 2019, 131, 149.
7 Salimian R, Shahrokhian S, Panahi S. ACS Biomaterials Science & Engineering, 2019, 5(5), 2587.
8 Chen D, Wu Y, Tilley R D, et al. Biosens Bioelectron, 2022, 206, 114126.
9 Campos-Carrillo A, Weitzel J N, Sahoo P, et al. Pharmacology & Therapeutics, 2020, 207, 107458.
10 Gassman N R, Holton N W. Current Opinion in Biotechnology, 2019, 55, 30.
11 Chen H, Park S K, Joung Y, et al. Sensors and Actuators B-Chemical, 2022, 355, 131324.
12 Zhang W S, Pan J, Li F, et al. Analytical Chemistry, 2021, 93(8), 4126.
13 Zhu L, Zhang X, Yuan R, et al. Analytical Chemistry, 2022, 94(2), 1264.
14 Yu S, Chen S, Dang Y, et al. Analytical Chemistry, 2022, 94(41), 14349.
15 Koyappayil A, Lee M H. Sensors (Basel), 2020, 21(1), 89.
16 Wang X, Lu D, Liu Y, et al. Biosensors (Basel), 2022, 12(8), 566.
17 Banakar M, Hamidi M, Khurshid Z, et al. Biosensors (Basel), 2022, 12(11), 927.
18 Hou Y Y, Xie W Z, Tan X, et al. Analytica Chimica Acta, 2023, 1239, 340696.
19 Chaibun T, Puenpa J, Ngamdee T, et al. Nature Communications, 2021, 12(1), 802.
20 Bacchu M S, Ali M R, Das S, et al. Analytica Chimica Acta, 2022, 1192, 339332.
21 Khodadoust A, Nasirizadeh N, Taheri R A, et al. Mikrochimica Acta, 2022, 189(6), 213.
22 Razmi N, Hasanzadeh M, Willander M, et al. Analytical Methods, 2022, 14(16), 1562
23 Urso M, Tumino S, Bruno E, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 50143.
24 Xiong X, Zhu P, Li S, et al. Mikrochimica Acta, 2022, 189(8), 285.
25 Nehra A, Pal Singh K. Biosens Bioelectron, 2015, 74, 731.
26 Amani H, Mostafavi E, Arzaghi H, et al. ACS Biomaterials Science & Engineering, 2019, 5(1), 193.
27 Aleemardani M, Zare P, Seifalian A, et al. Biomedicines, 2021, 10(1), 73.
28 Taniselass S, Arshad M K M, Gopinath S C B. Biosens Bioelectron, 2019, 130, 276
29 Zhang H, Zhang H, Aldalbahi A, et al. Biosens Bioelectron, 2017, 89(Pt 1), 96
30 Xu H S, Gao P C, Xue M Y, et al. Petrochemical Technology, 2021, 50(11), 1202.
徐海升, 郜鹏程, 薛媚月, 等. 石油化工, 2021, 50(11), 1202.
31 Liao C, Li Y, Tjong S C. International Journal of Molecular Sciences, 2018, 19(11), 3564.
32 Grajek H, Jonik J, Witkiewicz Z, et al. Critical Reviews in Analytical Chemistry, 2020, 50(5), 445.
33 Ghanbari K, Roushani M, Azadbakht A. Analytical Biochemistry, 2017, 534, 64.
34 Yuan P, Ding X, Yang Y Y, et al. Advanced Healthcare Materials, 2018, 7(13), e1701392.
35 Fritea L, Banica F, Costea T O, et al. Materials (Basel), 2021, 14(21), 6319.
36 Malla P, Liu C H, Wu W C, et al. Talanta, 2023, 262, 124701.
37 Alafeef M, Dighe K, Moitra P, et al. ACS Nano, 2020, 14(12), 17028.
38 Peng Y, Li R, Yu M, et al. Mikrochimica Acta, 2020, 187(9), 494.
39 Jin W, Ruiyi L, Nana L, et al. Mikrochimica Acta, 2021, 188(8), 284.
40 Yuanfeng P, Ruiyi L, Xiulan S, et al. Analytica Chimica Acta, 2020, 1121, 17.
41 Nagar B, Balsells M, De La Escosura-Muñiz A, et al. Biosens Bioelectron, 2019, 129, 238.
42 Silva L R G, Stefano J S, Orzari L O, et al. Biosensors (Basel), 2022, 12(8), 622.
43 Rawat R, Singh S, Roy S, et al. Materials Chemistry and Physics, 2023, 295, 127050.
44 Safarzadeh M, Pan G. Biosensors (Basel), 2022, 12(2), 98.
45 Liu F, Li K, Zhang Y, et al. Mikrochimica Acta, 2020, 187(10), 574.
46 Mogha N K, Sahu V, Sharma R K, et al. Journal of Materials Chemistry B, 2018, 6(31), 5181.
47 Ghalehno M H, Mirzaei M, Torkzadeh-Mahani M. Bioelectrochemistry, 2018, 124, 165.
48 Arvand M, Sanayeei M, Hemmati S. Biosens Bioelectron, 2018, 102, 70.
49 Shahamirifard S A, Ghaedi M. Biosens Bioelectron, 2019, 141, 111474.
50 Shahamirifard S A, Ghaedi M, Razmi Z, et al. Biosens Bioelectron, 2018, 114, 30.
51 Hou X, Wu W, Zhao F, et al. Mikrochimica Acta, 2021, 188(3), 86.
52 Jaiswal N, Pandey C M, Solanki S, et al. Mikrochimica Acta, 2019, 187(1), 1.
53 Akond U S, Mahanta A, Jasimuddin S. Analytical Methods, 2023, 15(4), 436.
54 Karthika A, Karuppasamy P, Selvarajan S, et al. Ultrasonics Sonochemistry, 2019, 55, 196.
55 Govindasamy M, Subramanian B, Wang S F, et al. Ultrasonics Sonochemistry, 2019, 56, 134.
56 Jalil O, Pandey C M, Kumar D. Mikrochimica Acta, 2020, 187(5), 275.
57 Kumar S, Gupta N, Malhotra B D. Bioelectrochemistry, 2021, 140, 107799.
58 Chen M, Hou C, Huo D, et al. Sensors and Actuators B-Chemical, 2017, 239, 421.
59 Chen Z, Liu X, Liu D, et al. Frontiers in Chemistry, 2020, 8, 521.
60 Zhang K, Zhang N, Zhang L, et al. RSC Advances, 2018, 8(29), 16146.
61 Mohammadian N, Faridbod F. Sensors and Actuators B-Chemical, 2018, 275, 432.
62 Giliopoulos D, Zamboulis A, Giannakoudakis D, et al. Molecules, 2020, 25(1), 185.
63 Babu S K, Jayachandran M, Maiyalagan T, et al. Materials Letters, 2021, 302, 130338.
64 Xu H, Zhang D, Weng X, et al. Mikrochimica Acta, 2022, 189(5), 201.
65 Tang J, Jiang S, Liu Y, et al. Mikrochimica Acta 2018, 185(10), 486.
66 Roostaee M, Beitollahi H, Sheikhshoaie I. Micromachines (Basel), 2022, 13(11), 1834.
67 Ruan X, Liu D, Niu X, et al. Analytical Chemistry, 2019, 91(21), 13847.
68 Hua X, Gao G, Pan S. Analytical and Bioanalytical Chemistry, 2018, 410(29), 7749.
69 Wang X, Zhang J, Wei Y, et al. Analyst, 2020, 145(5), 1933.
70 Yiwei X, Yahui L, Weilong T, et al. Mikrochimica Acta, 2021, 188(4), 112.
71 Jayaramulu K, Mukherjee S, Morales D M, et al. Chemical Reviews, 2022, 122(24), 17241.
72 Sivakumar P M, Islami M, Zarrabi A, et al. Anticancer Agents Med Chem, 2020, 20(11), 1340.
73 Zeng L, Zhu Z, Sun D W. Critical Reviews in Food Science and Nutrition, 2022, 62(14), 3705.
74 Liao D, Wang Y, Xie P, et al. Journal of Colloid And Interface Science, 2022, 628(Pt A), 574.
75 Rajarathinam T, Kwon M, Thirumalai D, et al. Analytica Chimica Acta, 2021, 1175, 338749.
76 Pothipor C, Aroonyadet N, Bamrungsap S, et al. Analyst, 2021, 146(8), 2679.
77 Ye Y, Yan W, Liu Y, et al. Analytica Chimica Acta, 2019, 1074, 80.
78 Malmir M, Arjomandi J, Khosroshahi A G, et al. Biosens Bioelectron, 2021, 189, 113356.
79 Tran L T, Tran H V, Dang H T M, et al. RSC Advances, 2021, 11(32), 19470.
80 Fani M, Rezayi M, Pourianfar H R, et al. Biotechnology and Applied Biochemistry, 2021, 68(3), 626.
81 Jayakumar K, Camarada M B, Rajesh R, et al. Biosens Bioelectron, 2018, 120, 55.
82 Bao J, Hou C, Zhao Y, et al. Talanta, 2019, 196, 329.
83 Lopez Mujica M, Zhang Y, Gutierrez F, et al. Microchemical Journal, 2021, 160, 105596.
84 Zhou H, Bai S, Zhang Y, et al. International Journal of Environmental Research and Public Health, 2022, 19(13), 7584.
85 Işin D, Eksin E, Erdem A. Biosensors (Basel), 2022, 12(2), 95.
86 Niu X, Chen W, Wang X, et al. Mikrochimica Acta, 2018, 185(3), 167.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[3] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[4] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[5] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[6] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[7] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[8] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[9] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[10] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[11] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[12] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[13] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[14] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[15] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed