Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080114-11    https://doi.org/10.11896/cldb.22080114
  无机非金属及其复合材料 |
石墨烯纳米带的制备技术及应用研究现状
周新博, 付景顺, 苑泽伟*, 钟兵, 刘涛, 唐美玲
沈阳工业大学机械工程学院,沈阳 110870
Current Status of Preparation Technology and Application of Graphene Nanoribbons
ZHOU Xinbo, FU Jingshun, YUAN Zewei*, ZHONG Bing, LIU Tao, TANG Meiling
School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 34586KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有优异的力学、电学、光学、热学等物理性质,是当前新型材料的研究热点之一,被广泛应用在导电薄膜、储能元件、药物载体以及锂电池等领域。然而,石墨烯无带隙的特点限制其更广泛的应用,因此,通过技术手段打开石墨烯带隙成为学者们亟待解决的新问题。将石墨烯制成石墨烯纳米带(Graphene nanoribbons,GNRs)是打开其带隙的可行办法。因此,本文梳理了制备GNRs的不同方法,综述了其制备原理和研究进展,并对比了其优点和不足,提出了将不同方法的优点相互结合的复合制备方法,以实现可控、高效、高质量制备GNRs,最后介绍了GNRs在高性能传感器、场效应晶体管和光电探测器领域应用的研究进展和未来发展趋势。这对GNRs进一步应用在纳米器件中有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周新博
付景顺
苑泽伟
钟兵
刘涛
唐美玲
关键词:  石墨烯纳米带  剪裁  化学合成  传感器  场效应晶体管  光电探测器    
Abstract: Graphene has excellent mechanical, electrical, optical, thermal, and other physical properties, and it is a popular research subject in new materials. Graphene is used in conductive films, energy-storage devices, drug carriers, lithium batteries, and other fields. However, the characteristics of graphene material without a band gap limit its wider application, therefore, opening the graphene band gap through technical means has become a new problem to be solved. Making graphene into GNRs (graphene nanoribbons) is a feasible way to open its band gap, thus different methods of preparing GNRs are summarized in this paper. The preparation principle and research progress are reviewed, the advantages and disadvantages are compared, and a composite preparation method combining the advantages of different methods is proposed to realize the controllable, efficient, and high-quality preparation of GNRs. Finally, the research progress and future development trend of GNRs in high-performance sensors, field-effect transistors, and photodetectors are introduced. This research has certain guiding significance for the further application of GNRs in nano devices.
Key words:  graphene nanoribbon    tailoring    chemical synthesis    sensor    field effect transistor    photodetector
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TN389  
基金资助: 国家自然科学基金(52275455)
通讯作者:  *苑泽伟,沈阳工业大学机械工程学院教授、博士研究生导师。2005年郑州轻工业学院机械设计制造及其自动化专业本科毕业,2007年大连理工大学机械制造专业硕士毕业,2012年大连理工大学机械制造专业博士毕业。目前主要从事精密加工与特种加工技术、难加工材料的高效加工技术、高端装备关键零部件制造技术等方面的研究工作。发表论文40余篇,包括The International Journal of Advanced Manufacturing Technology、Materials and Manufacturing Processes、Chinese Journal of Mechanical Engineering等。zwyuan@aliyun.com   
作者简介:  周新博,2017年6月、2021年6月于沈阳工业大学获得工学学士学位和硕士学位。现为沈阳工业大学机械工程学院博士研究生,在苑泽伟教授的指导下进行研究。目前主要研究领域为微纳加工技术。
引用本文:    
周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
ZHOU Xinbo, FU Jingshun, YUAN Zewei, ZHONG Bing, LIU Tao, TANG Meiling. Current Status of Preparation Technology and Application of Graphene Nanoribbons. Materials Reports, 2024, 38(4): 22080114-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080114  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22080114
1 Wang L F, Zheng Q S. Applied Physics Letters, 2007, 90(15), 153113.
2 Li A, Zhou W, Xie M, et al. Diamond and Related Materials, 2021, 111, 108141.
3 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
4 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
5 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
6 Liu Y Q. Graphene: from basics to applications, Chemical Industry Press, China, 2017, pp. 14 (in Chinese).
刘云圻. 石墨烯从基础到应用, 化学工业出版社, 2017, pp. 14.
7 Olabi A G, Abdelkareem M A, Wilberforce T, et al. Renewable & Sustainable Energy Reviews, 2021, 135, 110026.
8 Zarei S, Hosseini Z, Sabetghadam S A, et al. The European Physical Journal Plus, 2021, 136(5), 515.
9 Eftekhar M, Raoufi F. Polycyclic Aromatic Compounds, 2022, 42(7), 4780.
10 Wang C, Xu J, Liu Y H, et al. Journal of China Pharmaceutical University, 2017, 48(1), 117(in Chinese).
王晨, 许军, 刘燕华, 等. 中国药科大学学报, 2017, 48(1), 117.
11 Neupane H K, Adhikari N P. Journal of Molecular Modeling, 2021, 27(3), 82.
12 Prabhakar S, Melnik R. Physica E: Low-dimensional Systems & Nanostructures, 2022, 142, 115267.
13 López-Sancho M P, Muñoz M C. Physical Review B, 2021, 104(24), 245402.
14 Zhang H, Cai X M, Hao Z L, et al. Acta Physica Sinica, 2017, 66(21), 209 (in Chinese).
张辉, 蔡晓明, 郝振亮, 等. 物理学报, 2017, 66(21), 209.
15 Zhang Y, Liu Q, Shao X, et al. Chinese Journal of Rare Metals, 2021, 45(9), 1119 (in Chinese).
张艳, 柳青, 邵旭, 等. 稀有金属, 2021, 45(9), 1119.
16 Padmanabhan N T, Thomas N, Louis J, et al. Chemosphere, 2021, 271, 129506.
17 Zheng Yun, Pan Zhiming, Wang Xinchen. Chinese Journal of Catalysis, 2013, 34(3), 524.
18 Hurum D C, Agrios A G, Gray K A, et al. The Journal of Physical Chemistry B, 2003, 107(19), 4545.
19 Tatsuma T, Tachibana S, Miwa T, et al. The Journal of Physical Chemistry B, 1999, 103(38), 8033.
20 Zhang L, Diao S, Nie Y, et al. Journal of the American Chemical Society, 2011, 133(8), 2706.
21 Wang Z, Li T, Schulte L, et al. ACS Applied Materials & Interfaces, 2016, 8(13), 8329.
22 Han H. Molecular dynamics simulation of photocatalytic auxiliary cutting of graphene. Master’s Thesis, Shenyang University of Technology, China, 2019 (in Chinese).
韩晖. 光催化辅助切割石墨烯的分子动力学模拟. 硕士学位论文, 沈阳工业大学, 2019.
23 Ma L, Wang J, Yip J, et al. The Journal of Physical Chemistry Letters, 2014, 5(7), 1192.
24 Lukas M, Meded V, Vijayaraghavan A, et al. Nature Communications, 2013, 4(1), 1379.
25 Datta S S, Strachan D R, Khamis S M, et al. Nano Letters, 2008, 8(7), 1912.
26 Zoberbier T, Chamberlain T W, Biskupek J, et al. Journal of the American Chemical Society, 2012, 134(6), 3073.
27 Ci L, Xu Z, Wang L, et al. Nano Research, 2008, 1, 116.
28 Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Nano Letters, 2009, 9(7), 2600.
29 Sang Y. Investigations on controlled nanocutting of graphene by metal nanoparticles. Ph. D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
桑园. 金属颗粒纳米切割石墨烯的调控及其应用研究. 博士学位论文, 中国科学技术大学, 2018.
30 Fan P, Gao J, Mao H, et al. Micromachines, 2022, 13(2), 228.
31 Pingue P. Tip-based nanofabrication: fundamentals and applications, Springer, New York, USA, 2011, pp. 357.
32 Tseng A A, Notargiacomo A, Chen T P. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(3), 877.
33 Puddy R K, Scard P H, Tyndall D, et al. Applied Physics Letters, 2011, 98(13), 133120.
34 Giesbers A J M, Zeitler U, Neubeck S, et al. Solid State Communications, 2008, 147(9-10), 366.
35 Zhang Y X, Peng Y T, Lang H J. Acta Physica Sinica, 2020, 69(10), 197 (in Chinese).
张玉响, 彭倚天, 郎浩杰. 物理学报, 2020, 69(10), 197.
36 Wang F Y. Femtosecond laser structuring of graphene oxide and its wettability modulation. Master’s Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), China, 2021 (in Chinese).
王飞跃. 氧化石墨烯的飞秒激光结构化处理及其浸润性调控. 硕士学位论文, 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
37 Zhang W, Li L, Wang Z B, et al. Applied Physics A, 2012, 109, 291.
38 Lin Z, Ye X H, Han J P, et al. Chinese Journal of Lasers, 2015, 42(7), 93 (in Chinese).
林喆, 叶晓慧, 韩金鹏, 等. 中国激光, 2015, 42(7), 93.
39 Chen H Y, Han D, Tian Y, et al. Chemical Physics, 2014, 430, 13.
40 Wang K, Zhou Q P, Chen Z G, et al. New Carbon Materials, 2020, 35(6), 716 (in Chinese).
王锴, 周庆萍, 陈志刚, 等. 新型炭材料, 2020, 35(6), 716.
41 Matsui S, Ichihashi T, Mito M. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1989, 7(5), 1182.
42 Ni X, Kildishev A V, Shalaev V M. Nature Communications, 2013, 4(1), 2807.
43 Kim S, Dyck O, Ievlev A V, et al. Carbon, 2018, 138, 277.
44 Matsui K, Takei Y, Inaba A, et al. Micro & Nano Letters, 2016, 11(11), 670.
45 Bell D C, Lemme M C, Stern L A, et al. Nanotechnology, 2009, 20(45), 455301.
46 Fischbein M D, Drndić M. Applied Physics Letters, 2008, 93(11), 113107.
47 Abdol M A, Sadeghzadeh S, Jalaly M, et al. Scientific Reports, 2019, 9(1), 8127.
48 Xie X N, Chung H J, Sow C H, et al. Materials Science and Engineering R: Reports, 2006, 54(1-2), 1.
49 Tang X, Lai K W C. IEEE Transactions on Nanotechnology, 2016, 15(4), 607.
50 Liu L Q, Zhang Y, Xi N, et al. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(4), 358 (in Chinese).
刘连庆, 张嵛, 席宁, 等. 中国科学:物理学 力学 天文学, 2012, 42(4), 358.
51 Hu C L, Gao B, Zhou Y W. Journal of Functional Materials, 2018, 49(9), 9001 (in Chinese).
胡成龙, 高波, 周英伟. 功能材料, 2018, 49(9), 9001.
52 Yang X, Dou X, Rouhanipour A, et al. Journal of the American Chemical Society, 2008, 130(13), 4216.
53 Cai J, Ruffieux P, Jaafar R, et al. Nature, 2010, 466(7305), 470.
54 Chen Z, Wang H I, Bilbao N, et al. Journal of the American Chemical Society, 2017, 139(28), 9483.
55 Wang S, Wang W H, Lyu J P, et al. Acta Physica Sinica, 2021, 70(2), 127 (in Chinese).
王铄, 王文辉, 吕俊鹏, 等. 物理学报, 2021, 70(2), 127.
56 Kato T, Hatakeyama R. Nature Nanotechnology, 2012, 7(10), 651.
57 Chen L, He L, Wang H S, et al. Nature Communications, 2017, 8(1), 14703.
58 Jacobberger R M, Arnold M S. ACS Nano, 2017, 11(9), 8924.
59 Wu X S. Physics, 2009, 38(6), 409 (in Chinese).
吴孝松. 物理, 2009, 38(6), 409.
60 Nevius M S, Wang F, Mathieu C, et al. Nano Letters, 2014, 14(11), 6080.
61 Sprinkle M, Ruan M, Hu Y, et al. Nature Nanotechnology, 2010, 5(10), 727.
62 Han T L, Tang L B, Zuo W B, et al. Infrared Technology, 2021, 43(12), 1141 (in Chinese).
韩天亮, 唐利斌, 左文彬, 等. 红外技术, 2021, 43(12), 1141.
63 Geng Z, Hähnlein B, Granzner R, et al. Annalen der Physik, 2017, 529(11), 1700033.
64 Lu L S, Wang W T, Xie Y X, et al. Journal of Mechanical Engineering, 2021, 57(21), 234 (in Chinese).
陆龙生, 王文涛, 谢颖熙, 等. 机械工程学报, 2021, 57(21), 234.
65 Parmar J, Patel S K. Microwave and Optical Technology Letters, 2022, 64(1), 77.
66 Hossain F M, Al-Dirini F, Skafidas E. Journal of Applied Physics, 2014, 115(21), 214303.
67 Saha K K, Drndic M, Nikolic B K. Nano Letters, 2012, 12(1), 50.
68 Lin T C, Li Y S, Chiang W H, et al. Biosensors and Bioelectronics, 2017, 89, 511.
69 Jothi L, Jayakumar N, Jaganathan S K, et al. Materials Research Bulletin, 2018, 98, 300.
70 Rostami S, Mehdinia A, Niroumand R, et al. Analytica Chimica Acta, 2020, 1120, 11.
71 Jaiswal N K, Kovaević G, Pivac B. Applied Surface Science, 2015, 357, 55.
72 Omidi M, Faizabadi E. IEEE Sensors Journal, 2018, 18(21), 8642.
73 Wang H, Wang C, Wu H Y, et al. Journal of Xi’an Jiaotong University, 2020, 54(8), 107 (in Chinese).
王欢, 王常, 吴海洋, 等. 西安交通大学学报, 2020, 54(8), 107.
74 Xu L H, Wu T M. Journal of Materials Science: Materials in Electronics, 2020, 31(9), 7276.
75 Paul R K, Badhulika S, Saucedo N M, et al. Analytical Chemistry, 2012, 84(19), 8171.
76 Jing X, Illarionov Y, Yalon E, et al. Advanced Functional Materials, 2020, 30(18), 1901971.
77 Zhao L, Zhao B H, Chang S, et al. Micronanoelectronic Technology, 2013, 50(8), 474 (in Chinese).
赵磊, 赵柏衡, 常胜, 等. 微纳电子技术, 2013, 50(8), 474.
78 Wang J, Wang Q. Physica B: Condensed Matter, 2020, 583, 412022.
79 Wong K L, Chuan M W, Hamzah A, et al. Superlattices and Microstructures, 2020, 143, 106548.
80 Mutlu Z, Jacobse P H, McCurdy R D, et al. Advanced Functional Materials, 2021, 31(47), 2103798.
81 Sun J, Iwasaki T, Muruganathan M, et al. Applied Physics Letters, 2015, 106(3), 033509.
82 Zhang Q, Fang T, Xing H, et al. IEEE Electron Device Letters, 2008, 29(12), 1344.
83 Nayana G H, Vimala P, Pandian M K, et al. Diamond and Related Materials, 2022, 121, 108784.
84 Zhang W, Ragab T, Basaran C. IEEE Transactions on Electron Devices, 2019, 66(4), 1971.
85 Moslemi M R, Sheikhi M H, Saghafi K, et al. Microelectronics Reliability, 2012, 52(11), 2579.
86 Long M, Wang P, Fang H, et al. Advanced Functional Materials, 2019, 29(19), 1803807.
87 Ostovari F, Moravvej-Farshi M K. Applied Surface Science, 2014, 318, 108.
88 Rahman S, Faizan M, Boora N, et al. Journal of Electronic Materials, 2022, 51(12), 6815.
89 Yu J, Zhong J, Kuang X, et al. Nanoscale Research Letters, 2020, 15(1), 124.
90 Liu H Y, Niu Y X, Yin Y H, et al. Spectroscopy and Spectral Analysis, 2016, 36(12), 3811 (in Chinese).
刘海月, 牛燕雄, 尹贻恒, 等. 光谱学与光谱分析, 2016, 36(12), 3811.
91 Zhang Y, Hui C, Sun R, et al. Nanotechnology, 2014, 25(13), 135301.
92 Mak K F, Ju L, Wang F, et al. Solid State Communications, 2012, 152(15), 1341.
93 Hoseini S R, Rasooli Saghai H. Optical and Quantum Electronics, 2017, 49(4), 1.
[1] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[2] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[3] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[4] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[5] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[6] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[7] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[8] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[9] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[10] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[11] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[12] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[13] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[14] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[15] 王磊, 于新海, 袁帅帅, 姚馨淇, 李传东. 石墨烯及MXenes在氢气传感器中的应用研究进展[J]. 材料导报, 2023, 37(21): 22040076-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed