Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22030317-23    https://doi.org/10.11896/cldb.22030317
  无机非金属及其复合材料 |
柔性可穿戴电子应变传感器的研究进展
门海蛟, 宋健尧, 黄秉经, 李建昌*
东北大学真空与流体工程技术研究中心,沈阳 110819
Recent Advances in Flexible and Wearable Strain Sensors
MEN Haijiao, SONG Jianyao, HUANG Bingjing, LI Jianchang*
Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 69835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性可穿戴电子应变传感器因可承受力学形变、质轻及实时监测等优点,是柔性电子领域的研究热点之一,本文从材料选择、器件结构、传感原理、疲劳失效及数值模拟等方面进行了综述。应变传感器的力电转化效率与寿命从本质上取决于导电网络演变和功能层/基底界面,需综合衡量材料的导电性和浸润性等属性,提高其传感性能。功能层结构分为螺旋、褶皱、编织、多孔及仿生五类。传感原理包括压阻、电容及压电式,其中压阻式分为断开机制、裂纹扩展及量子隧道效应。疲劳特性研究表明,交变应力会导致功能层屈曲、开裂及脱落。利用官能团改性、构建三维自交联阵列、引入拓扑结构及形成有序纳米晶畴可改善器件服役行为。疲劳失效模型归纳为拉、弯及扭转形式,在此基础上讨论了模型建立原则、力学本构关系及寿命预测精度。结合数值模拟和应变传递理论构建等效导电路径模型可揭示传感过程中的形态变化、应变分布及界面作用,实现对外界刺激的精准测量。下一步应从基底热力学稳定性、极端条件下服役行为、力电转换机制及穿戴舒适性等方面深入探究,为构建综合性能良好的传感器奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
门海蛟
宋健尧
黄秉经
李建昌
关键词:  柔性电子技术  应变传感器  界面效应  疲劳失效  多尺度模拟    
Abstract: Recently, flexible and wearable electronic sensors has become a hot topic owing to their superior mechanical properties, lightweight, and real-time monitoring. In this review, we systematically summarize the recent progress of wearable electronic strain sensors and discuss developing trends of strain sensing technology from the aspect of material selection, structure design, working principles, fatigue failure as well as numerical analysis. The results show that the electromechanical conversion efficiency and fatigue life of the strain sensor essentially depend on conductive network evolution and layer-substrate interface. It is necessary to comprehensively consider the conductivity and wettability of the material to improve the sensing properties. Depending on different structural characteristics, the functional layer is generally categorized into five types, including helical, wrinkled, knitted, three-dimensional porous, and biomimetic architectures. There are three types of sensor mechanisms: piezoresistivity, capacitance, and piezoelectricity. Particularly, the principle of the piezoresistive sensor can be classified into disconnection mechanism, crack propagation, and tunneling effect. The studying on the fatigue characteristics shows that alternating stress can cause the functional layer to buckle, crack, and fall off. The fatigue life of a device can be effectively improved by functional group modification, the construction of a three-dimensional self-cross-linking array, the formation of topological structures, and the introduction of high-energy nanostructures. The fatigue failure models of tension, bending, and torsion deformations were schematically analyzed through construction theory, mechanical constitutive relation, and fatigue life prediction. For more efficient and accurate measurement of external stimuli, the conductive circuits model can be established by combining numerical simulations and strain transfer theory to reveal morphological changes, strain distribution, and interfacial effects. Although tremendous progress has been made for wearable strain sensors, it is of vital significance to develop thermodynamic stability, service behavior under extreme conditions, and electromechanical conversion mechanisms in order to fabricate devices with excellent strain-sensing performance.
Key words:  flexible electronics technology    strain sensor    interfacial effects    fatigue failure    multiscale numerical simulation
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TP212.9  
基金资助: 国家自然科学基金(51773030)
通讯作者:  *李建昌,东北大学机械工程与自动化学院教授、博士研究生导师,2000年北京大学电子学系物理电子学专业博士毕业。2009年入选“辽宁百千万人才工程”千人层,研究方向为真空科学技术、凝聚态薄膜及纳米电子器件。已在Physical Review Letters、The Journal of Physical Chemistry Letters、Organic Electronics、Chemistry of Materials、Journal of Physical Chemistry C、Journal of Physical Chemistry B及Applied Physics Letters等知名国际学术期刊上发表学术论文40多篇。jcli@mail.neu.edu.cn   
作者简介:  门海蛟,2015年6月、2019年6月于沈阳师范大学分别获得理学学士学位和硕士学位。现为东北大学机械工程与自动化学院博士研究生,在李建昌教授的指导下进行研究。目前主要研究领域为柔性高分子基复合薄膜及纳米电子器件。
引用本文:    
门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
MEN Haijiao, SONG Jianyao, HUANG Bingjing, LI Jianchang. Recent Advances in Flexible and Wearable Strain Sensors. Materials Reports, 2023, 37(21): 22030317-23.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030317  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22030317
1 Hammock M L, Chortos A, Tee B C, et al. Advanced Materials, 2013, 25(42), 5997.
2 Wang X D, Dong L, Zhang H L, et al. Advanced Science, 2015, 2(10), 1500169.
3 Khan Y, Ostfeld A E, Lochner C M, et al. Advanced Materials, 2016, 28(22), 4373.
4 Amjadi M, Kyung K, Park I, et al. Advanced Functional Materials, 2016, 26(11), 1678.
5 Xu Y, Jiang F K, Newbern S, et al. Sensors and Actuators A, 2003, 105(3), 321.
6 Park H, Kim D S, Hong S Y, et al. Nanoscale, 2017, 9(22), 7631.
7 Yan T, Wang Z, Pan Z J. Current Opinion in Solid State & Materials Science, 2018, 22(6), 213.
8 Wang H M, He M S, Zhang Y Y. Acta Physico-Chimica Sinica, 2019, 35(11), 1207 (in Chinese).
王灏珉, 何茂帅, 张莹莹. 物理化学学报, 2019, 35(11), 1207.
9 Nathan A, Ahnood A, Cole M T, et al. Proceedings of the IEEE, 2012, 100, 1486.
10 Jiang Y, Liu Z Y, Matsuhisa N J, et al. Advanced Materials, 2018, 30(12), 7714.
11 Wang S, Fang Y L, He H, et al. Advanced Functional Materials, 2020, 31(5), 2007495.
12 Su G H, Gao J, Zhang X Q, et al. Journal of Materials Chemistry A, 2020, 8(4), 2074.
13 Shi C Q, Zhou Z A, Lei Z P, et al. Science Advances, 2020, 6(45), 2375.
14 Lee J H, Heo J S, Kim Y J, et al. Advanced Materials, 2020, 32(22), 2000969.
15 Zhou Z H, Chen K, Li X S, et al. Nature Electronics, 2020, 3(9), 571.
16 Gong T X, Zhang H, Huang W, et al. Carbon, 2018, 140, 286.
17 Pu J H, Zhao X, Zha X J, et al. Nano Energy, 2020, 74, 104814.
18 Li J, Wang L J, Wang X Z, et al. ACS Applied Materials Interfaces, 2020, 12(1), 1427.
19 Cai Y C, Shen J, Dai Z Y, et al. Advanced Materials, 2017, 29(31), 1606411.
20 Lee J, Pyo S, Kwon D S, et al. Small, 2019, 15(12), 1805120.
21 Hu N, Karube Y, Arai M, et al. Carbon, 2010, 48(3), 680.
22 Wang X F, Fu W, Gao G H, et al. npj Flexible Electronics, 2020, 4(1), 8.
23 Chen L M, Lu M Y, Yang H S, et al. ACS Nano, 2020, 14(7), 8191.
24 Pan S W, Liu Z Y, Wang M, et al. Advanced Materials, 2019, 31(35), 1903130.
25 Liu J Z, Zhao F Y, Tao Q C, et al. Materials Horizons, 2019, 6(9), 1892.
26 Nishino T, Nozawa A, Kotera M, et al. Review of Scientific Instruments, 2000, 71(5), 2094.
27 Candal M V, Safari M, Fernández M, et al. Polymers, 2021, 13(20), 3531.
28 Yin Y H, Song J F, Zhao G, et al. Polymers Advanced Technologies, 2022, 33(3), 886.
29 Ou X H, Lu X M, Chen S S, et al. European Polymer Journal, 2020, 122, 109368.
30 Sepúlveda A T, Villoria R G D, Viana J C, et al. Nanoscale, 2013, 5(11), 4847.
31 Darby D R, Cai Z Y, Mason C R, et al. Journal of Applied Polymer Science, 2022, 139(25), e52412.
32 Lee T I, Kim M S, Kim T S. Polymer Testing, 2016, 51, 181.
33 Biermann P J. Johns Hopkins Apl Technical Digest, 2011, 3(30), 250.
34 Park S, Mondal K, Treadway III R M, et al. ACS Applied Materials Interfaces, 2018, 10(13), 11261.
35 Shi X T, Xu R X, Li Y H. et al. Journal of Applied Mechanics, 2014, 81(12), 124502.
36 Phomrak S, Phisalaphong M. Journal of Nanomaterials, 2017, 2017, 4739793.
37 Okieimen F E, Akinlabi A K. Journal of Applied Polymer Science, 2022, 85(5), 1070.
38 Kato H, Nakatsubo F, Abe K, et al. RSC Advances, 2015, 5(38), 29814.
39 Kawaguchi K, Lijima M, Miyakawa H, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105(5), 1151.
40 Raza K, Akhtar S S, Arif A F M, et al. Scientific Reports, 2020, 10(1), 5304.
41 Huang S C, Deng C, Wang S X, et al. Polymer Degradation and Stability, 2019, 165, 126.
42 Huang S, Liu Y, Zhao Y, et al. Advanced Functional Materials, 2018, 29(6), 1805924.
43 Dickey M D. Advanced Materials, 2017, 29(27), 1606425.
44 Ma B, Xu C T, Chi J J, et al. Advanced Functional Materials, 2019, 29(28), 1901370.
45 Zhang Y Q, Liu S D, Miao Y H, et al. ACS Applied Materials Interfaces, 2020, 12(25), 27962.
46 Yang Y J, Han J, Huang J R, et al. Advanced Functional Materials, 2020, 30(29), 1909652.
47 Yuan B, Zhao C J, Sun X Y, et al. Advanced Functional Materials, 2020, 30(14), 1910709.
48 Guiseppi-Elie A. Biomaterials, 2010, 31(10), 2701.
49 Han J Q, Ding Q Q, Mei C T, et al. Electrochimica Acta, 2019, 318, 660.
50 Wang C R, Jiang X, Kim H J, et al. Biomaterials, 2022, 285, 121479.
51 Pan S W, Zhang F L, Cai P Q, et al. Advanced Functional Materials, 2020, 30(29), 1909540.
52 Ohm Y, Pan C F, Ford M J, et al. Nature Electronics, 2021, 4(3), 185.
53 Jian M Q, Wang C Y, Wang Q, et al. Science China Materials, 2017, 60(11), 1026.
54 Zhuang Z Y, Cheng N, Zhang L Y, et al. Nanotechnology, 2020, 31(20), 123803.
55 Yu Y F, Zhai Y, Yun Z G, et al. Advanced Electronic Materials, 2019, 5(10), 1900538.
56 Zhou J, Xu X Z, Xin Y Y, et al. Advanced Functional Materials, 2018, 28(16), 1705591.
57 Huang J Y, Li D W, Zhao M, et al. Advanced Electronic Materials, 2019, 5(6), 1900241.
58 Cheng Y, Wang R R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365.
59 Huang T, He P, Wang R R, et al. Advanced Functional Materials, 2019, 29(45), 1903732.
60 Jiang Q Q, Tang C C, Wang H P, et al. Advanced Materials Technologies, 2019, 4(3), 1800572.
61 Wang Y M, Wang Y, Yang Y. Advanced Energy Materials, 2018, 8(22), 1800961.
62 Long Y, He P S, Xu R X, et al. Carbon, 2020, 157, 594.
63 Zhu L, Zhou X, Liu Y H, et al. ACS Applied Materials Interfaces, 2019, 11(13), 12968.
64 Wang C Y, Li X, Gao E L, et al. Advanced Materials, 2016, 28(31), 6640.
65 Liu J, Zhang H B, Xie X, et al. Small, 2018, 14(45), 1802479.
66 Zhang H J, Han W Q, Xu K, et al. Nano Letters, 2020, 20(5), 3449.
67 Zeng W, Shu L, Li Q, et al. Advanced Materials, 2014, 26(31), 5310.
68 Liu Z Y, Qi D P, Hu G Y, et al. Advanced Materials, 2018, 30(5), 1704229.
69 Li X M, Yang T T, Yang Y, et al. Advanced Functional Materials, 2016, 26(9), 1322.
70 Zheng Q B, Liu X, Xu H R, et al. Nanoscale Horiz, 2018, 3(1), 35.
71 Costa P, Goncalves S, Mora H, et al. ACS Applied Materials Interfaces, 2019, 11(49), 46285.
72 Xia K L, Chen X Y, Shen X Y, et al. ACS Applied Electronic Materials, 2019, 1(11), 2415.
73 Xu X, Guan C, Xu L, et al. ACS Nano, 2020, 14(1), 937.
74 Wang M, Shao C Y, Zhou S K, et al. Cellulose, 2018, 25(12), 7329.
75 Wu W. Science and Technology of Advanced Materials, 2019, 20(1), 187.
76 Sun B, Long Y Z, Liu S L, et al. Nanoscale, 2013, 5(15), 7043.
77 Yuan W J, Yang J Z, Yang K, et al. ACS Applied Materials Interfaces, 2018, 10(23), 7041.
78 Gao Y, Guo F Y, Cao P, et al. ACS Nano, 2020, 14(3), 3442.
79 Yang Y P, Luo C Z, Jia J J, et al. Nanomaterials, 2019, 9(6), 850.
80 Wang R, Jiang N, Su J, et al. Advanced Functional Materials, 2017, 27(35), 1702134.
81 Li L L, Xiang H Y, Xiong Y, et al. Advanced Science, 2018, 5(9), 1800558.
82 Bai Y Y, Zhang B, Wang Z X, et al. Journal of Materials Chemistry C, 2020, 8(15), 5202.
83 Jia Y F, Chen W J, Ye C, et al. Science China Materials, 2020, 63(10), 1983.
84 Chen S, Song Y J, Ding D Y, et al. Advanced Functional Materials, 2018, 28(42), 1802547.
85 Fu Y F, Li Y Q, Liu Y F, et al. ACS Applied Materials Interfaces, 2018, 10(41), 35503.
86 Wang S, Ning H M, Hu N, et al. Advanced Materials Interfaces, 2019, 7(1), 1901507.
87 Seyedin S, Uzun S, Levitt A, et al. Advanced Functional Materials, 2020, 30(12), 1910504.
88 Sengupta D, Pei Y T, Kottapalli A G P. ACS Applied Materials Interfaces, 2019, 11(38), 35201.
89 Hu H L, Ma Y L, Yue J L, et al. Composites Communications, 2022, 29, 10133.
90 Sun F Q, Tian M W, Sun X T, et al. Nano Letters, 2019, 19(9), 6592.
91 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(12), 12020.
92 Kessick R, Tepper G. Applied Physics Letters, 2004, 84(23), 4807.
93 Yang L S, Niu T X, Zhang H, et al. 2D Materials, 2017, 4(4), 041001.
94 Zhang X P, Ke L W, Zhang X M, et al. ACS Applied Materials Interfaces, 2022, 14(22), 25753.
95 Yang S T, Li C, Chen X Y, et al. ACS Applied Materials Interfaces, 2020, 12(17), 19874.
96 Zheng Y J, Li Y L, Zhou Y J, et al. ACS Applied Materials Interfaces, 2020, 12(1), 1474.
97 Li Y X, He T Y, Shi L J, et al. ACS Applied Materials Interfaces, 2020, 12(15), 17691.
98 Xu R Q, Lu Y Q, Jiang C H, et al. ACS Applied Materials Interfaces, 2014, 6(16), 13455.
99 Samad Y A, Li Y Q, Alhassan S M, et al. ACS Applied Materials Interfaces, 2015, 7(17), 9195.
100 Hao B, Mu L, Ma Q, et al. Composites Science and Technology, 2018, 163, 162.
101 Zhang R J, Hu R R, Li X M, et al. Advanced Functional Materials, 2018, 28(23), 1705879.
102 Li T, Luo H, Qin L, et al. Small, 2016, 12(36), 5042.
103 Zhang C J, Li H, Huang A M, et al. Small, 2019, 15(18), e180543.
104 Shen Z R, Liu F M, Huang S, et al. Biosensors and Bioelectronics, 2022, 211, 114298.
105 Duan L Y, D’Hooge D R, Cardon L. Progress in Materials Science, 2020, 114, 100617.
106 Chen J W, Yu Q L, Cui X H, et al. Journal of Materials Chemistry C, 2019, 7(38), 11710.
107 Ma J H, Wang P, Chen H Y, et al. ACS Applied Materials Interfaces, 2019, 11(8), 8527.
108 Sun H L, Dai K, Zhai W, et al. ACS Applied Materials Interfaces, 2019, 11(39), 36052.
109 Ren M N, Zhou Y J, Wang Y, et al. Chemical Engineering Journal, 2019, 360, 762.
110 Xue P D, Chen C, Diao D F. Carbon, 2019, 147, 227.
111 Nur R, Matsuhisa N, Jiang Z, et al. Nano Letters, 2018, 18(9), 5610.
112 Rao V K, Shauloff N, Sui X, et al. Journal of Materials Chemistry C, 2020, 8(18), 6034.
113 Xu J L, Wang H T, Ma T Y, et al. Carbon, 2020, 166, 316.
114 Deng W L, Yang T, Jin L, et al. Nano Energy, 2019, 55, 516.
115 Cheng S D, Han S C, Cao Z Y, et al. Small, 2020, 16(16), 1907461.
116 Jason N N, Ho M D, Cheng W L. Journal of Materials Chemistry C, 2017, 5(24), 5845.
117 Nguyen T, Dinh T, Phan H P, et al. Materials Horizons, 2021, 8(8), 2123.
118 Wang S, Xiao P, Liang Y, et al. Journal of Materials Chemistry C, 2018, 6, 5140.
119 Kang D, Pikhitsa P V, Choi Y W, et al. Nature, 2014, 516(7530), 2.
120 Zheng S D, Wu X T, Huang Y H, et al. Composites Part A, 2019, 121, 510.
121 Liu Y C, Fan H H, Li K, et al. Advanced Materials Technologies, 2019, 4(9), 1900309.
122 Yang Y, Shi L J, Cao Z R, et al. Advanced Functional Materials, 2019, 29(14), 1807882.
123 Yang Y N, Cao Z R, He P, et al. Nano Energy, 2019, 66, 104134.
124 Obitayo W, Liu T. Journal of Sensors, 2012, 2012. 652348.
125 Simmons J G. Journal of Applied Physics, 1963, 34(6), 1793.
126 Alamusi, Hu N, Fukunaga H, et al. Sensors, 2011, 11(11), 10691.
127 Chhetry A, Sharma S, Yoon H, et al. Advanced Functional Materials, 2020, 30(31), 1910020.
128 Fan F R, Tang W, Wang Z L. Advanced Materials, 2016, 28(22), 4283.
129 Dong K, Peng X, Wang Z L. Advanced Materials, 2020, 32(5), 1902549.
130 Huang Y A, Ding Y J, Bian J, et al. Nano Energy, 2017, 40, 432.
131 Xu M X, Li X, Jin C C, et al. Journal of Materials Chemistry C, 2020, 8(4), 1466.
132 Gunda M, Kumar P, Katiyar M. Critical Reviews in Solid State and Materials Sciences, 2016, 42(2), 129.
133 Yi S M, Choi I S, Kim B J, et al. Electronic Materials Letters, 2018, 14(4), 387.
134 Su Z M, Chen H T, Song Y, et al. Small, 2017, 13(47), 1702108.
135 Zhu C, Chalmers E, Chen L M, et al. Small, 2019, 15(35), 1902440.
136 Qi P D, Li N, Liu Y, et al. ACS Applied Materials Interfaces, 2020, 12(20), 23272.
137 Liu J, Lin S T, Liu X Y, et al. Nature Communications, 2020, 11(1), 1071.
138 Chang C C, Lin S D, Chiang K N. Journal of Electronic Packaging, 2018, 140(3), 031008.
139 Kawecki B, Podgórski J. In: 22nd International Conference on Computer Methods in Mechanics. Lublin, 2018, pp. 050005.
140 Happonen T, Ritvonen T, Korhonen P, et al. IEEE Transactions on Device & Materials Reliability, 2016, 16(1), 25.
141 Kim B J, Shin H A S, Lee J H, et al. Japanese Journal of Applied Physics, 2016, 55(6), 06JF01.
142 Kim T W, Lee J S, Kim Y C, et al. Material, 2019, 12(15), 2490.
143 Wei Y G. International Journal of Solids and Structures, 2004, 41(18-19), 5087.
144 Gosz M, Okyar A F, Naira S. Interface Science, 2003, 11(3), 329.
145 Rodrigues D M, Menezes L F, Loureiro A. Engineering Fracture Mechanics, 2004, 71(13-14), 2053.
146 Nguyen T D, Yeager J D, Bahr D F, et al. Journal of Engineering Materials and Technology-Transactions of the Asme, 2010, 132(2), 021001.
147 Tovstik P, Tovstik T. Acta Mechanica, 2017, 228(10), 3403.
148 Wang C H, Rose L R F. International Journal of Solids and Structures, 1999, 36(13), 1985.
149 Bednarek T, Sosnowski W. International Journal of Fatigue, 2010, 32(10), 1591.
150 Jalalahmadi B, Sadeghi F, Peroulis D. Journal of Microelectromectromechanical Systems, 2009, 18(5), 1016.
151 Xu Y, Chen H, Zhang S, et al. Metals, 2021, 11(3), 489.
152 Bogard F, Lestriez P, Guo Y Q. International Journal of Damage Mechanics, 2007, 17(2), 173.
153 Wnuk M P, Rouzbehani A. Physical Mesomechanics, 2008, 11(5-6), 272.
154 Liu X S, Zhang L, Wang L S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(12), 2930.
155 Begum S, Chen D L, Xu S, et al. International Journal of Fatigue, 2009, 31(4), 726.
156 Montesano J, Fawaz Z, Behdinan K, et al. Composite Structures, 2013, 101, 129.
157 Tsutsumi S, Toyosada M, Dunne F. Procedia Engineering, 2010, 2(1), 139.
158 Li F Z, Liu J P, Mars W V, et al. International Journal of Fatigue, 2015, 80, 50.
159 Rodas C O, Zaïri F, Naït-Abdelaziz M, et al. International Journal of Plasticity, 2016, 79, 217.
160 Quaresimin M, Salviato M, Zappalorto M. Composites Science and Technology, 2014, 91, 16.
161 Hsueh C H. Materials Science and Engineering A, 1990, 130(2), L11.
162 Li H, Guo R, Cheng H M. Composite Structures, 2021, 255, 112991.
163 Hsueh C H. Materials Science and Engineering A, 1993, 165(2), 189.
164 Leung C K Y, Li V C. Journal of Materials Science Letters, 1990, 9(10), 1140.
165 Zhou L M, Mai Y W, Ye L, et al. Key Engineering Materials, 1995, 104-107, 549.
166 Song J, Wen W D, Cui H T. Composite Structures, 2017, 166, 77.
167 Khan S U, Alderliesten R C, Benedictus R. Composites Science and Technology, 2009, 69(3-4), 396.
168 Sapountzakis E J, Tsipiras V J. Computers & Structures, 2009, 87(3-4), 15.
169 Carpinteri A, Fortese G, Ronchei C, et al. International Journal of Fatigue, 2016, 90, 191.
170 Susmel L, Lazzarin P. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(1), 63.
171 Dong J, Shen J, Sun Y H, et al. Journal of Materials Science & Technology, 2021, 82, 153.
172 Wang W, Yang T T, Zhu H W, et al. Applied Physics Letters, 2015, 106(17), 171903.
173 Li Z, Yang Q S. Materials and Design, 2020, 187, 108384.
174 Zhao F Y, Liu M X, Liu J Z, et al. AIP Advances, 2019, 9(6), 065015.
175 Qin Y J, Qu M C, Pan Y M, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105724.
176 Ma Y J, Jang K I, Wang L A, et al. Advanced Functional Materials, 2016, 26(29), 5345.
177 Wang J P, Wang W Z, Zhang C, et al. Composites Part B, 2018, 133, 185.
178 Wang Z H, Zhang L, Liu J, et al. ACS Applied Materials Interfaces, 2019, 11(5), 5316.
[1] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[2] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[3] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[4] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[5] 赵伦, 何晓聪, 邢保英, 张先炼, 邰加琪. 铝合金自冲铆接微动行为研究*[J]. 《材料导报》期刊社, 2017, 31(14): 105-108.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed