Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 105-108    https://doi.org/10.11896/j.issn.1005-023X.2017.014.022
  材料研究 |
铝合金自冲铆接微动行为研究*
赵伦, 何晓聪, 邢保英, 张先炼, 邰加琪
昆明理工大学机电工程学院, 昆明 650500;
Fretting Behavior of Self-piercing Riveted Aluminum Alloy Joints
ZHAO Lun, HE Xiaocong, XING Baoying, ZHANG Xianlian, TAI Jiaqi
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500;
下载:  全 文 ( PDF ) ( 1379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选择两组不同厚度铝合金板制成SA15和SA25自冲铆接头并进行疲劳实验,用威布尔分布验证实验数据有效性,用疲劳三参数经验公式拟合接头S-N曲线并对比分析接头疲劳性能,用扫描电子显微镜研究接头微动行为以探索疲劳失效与微动磨损的关系。实验数据服从威布尔分布,表明数据可靠。三参数经验公式较好地拟合接头S-N曲线,SA25接头疲劳性能优于SA15接头,且在中低疲劳寿命区域SA25接头疲劳性能的优越性更为突出。SA15接头失效于上板靠铆钉头,而SA25接头失效于下板沿纽扣。SA15接头在铆接区两板间微动磨损较严重,SA25接头在下板与铆钉腿部微动磨损较严重。疲劳失效部位与微动磨损剧烈部位重合,表明微动磨损是导致接头疲劳失效的重要因素之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵伦
何晓聪
邢保英
张先炼
邰加琪
关键词:  自冲铆接  微动行为  疲劳失效  二参数威布尔分布  疲劳三参数经验公式    
Abstract: Two groups of Al alloy substrates with different thicknesses were selected to prepare SA15 and SA25 self-piercing riveted joints and fatigue tests were conducted. The validity of fatigue data was verified by two-parameter Weibull distribution. Fatigue behavior of the joints was analyzed by S-N curves, which were fitted by empirical formula of fatigue three-parameter. The relation between fretting wear and fatigue failure was investigated by a scanning electron microscope (SEM). The results revealed that experimental data were valid because of they obeyed Weibull distribution. S-N curves of the joints can be well fitted by the empirical formula, the fatigue performance of SA25 joints is superior to that of SA15 joints. SA25 joints have excellent fatigue performance during middle-low fatigue life domain. SA15 joints failed in the upper substrate near rivet head, and SA25 joints fractured at the bottom substrate along the button. SA15 joints appeared severer fretting behavior at the riveting interface between two substrates, while SA25 joints appeared severer fretting wear at the interface between bottom substrate and rivet leg. Fatigue failure position coincided with the severer fretting wear position, which reveals that fretting wear is one of the significant factors for the fatigue failure of the joints.
Key words:  self-piercing riveting (SPR)    fretting behavior    fatigue failure    two-parameter Weibull distribution    fatigue three-parameter empirical formula
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TH131.1  
基金资助: *国家留学基金委项目(201500090194);国家自然科学基金(51565023;51565022); 2015年云南省博士研究生学术新人基金(2013603001)
作者简介:  赵伦:男,1988年生,博士研究生,主要研究方向为薄板材料连接新技术 E-mail:lun_zhaokmust@163.com 何晓聪:通讯作者,男,1955年生,博士,教授,博士研究生导师,从事薄板材料连接新技术研究 E-mail:xiaocong_he@126.com
引用本文:    
赵伦, 何晓聪, 邢保英, 张先炼, 邰加琪. 铝合金自冲铆接微动行为研究*[J]. 《材料导报》期刊社, 2017, 31(14): 105-108.
ZHAO Lun, HE Xiaocong, XING Baoying, ZHANG Xianlian, TAI Jiaqi. Fretting Behavior of Self-piercing Riveted Aluminum Alloy Joints. Materials Reports, 2017, 31(14): 105-108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.022  或          http://www.mater-rep.com/CN/Y2017/V31/I14/105
1 Zhang Xianlian,He Xiaocong,Cheng Qiang,et al. Investigation on the static strength of self-piercing riveted joints in dissimilar sheets about 1420 aluminum-lithium alloy [J]. Mater Rev:Res,2015,29(12):76(in Chinese).
张先炼,何晓聪,程强,等. 1420铝锂合金自冲铆异质组合接头静力学性能研究[J]. 材料导报:研究篇,2015,29(12):76.
2 Zhang Xianlian,He Xiaocong,Xing Baoying,et al. Influence of heat treatment of fatigue performances for self-piercing riveting similar and dissimilar titanium,aluminium and copper alloys [J]. Mater Des,2016,97:108.
3 He X C, Gu F X, Ball A. A review of numerical analysis of friction stir welding [J]. Prog Mater Sci,2014,65:1.
4 Xing B Y, He X C, Zeng K,et al. Mechanical properties of self-pier-cing riveted joints in aluminum alloy 5052 [J]. Int J Adv Manuf Technol,2014,75:351.
5 He X C,Zhao L,Deng C J,et al. Self-piercing riveting of similar and dissimilar metal substrates of aluminum alloy and copper alloy [J]. Mater Des,2015,65:923.
6 Huang L,Bonnen J,Lasecki J,et al. Fatigue and fretting of mixed metal self-piercing riveted joint [J]. Int J Fatigue,2016,83:230.
7 Huang L,Shi Y,Guo H,et al. Fatigue behavior and life prediction of self-piercing riveted joint [J]. Int J Fatigue,2016,88:96.
8 Gay A,Fabien L,Sebastien B,et al. Fatigue performance of a self-piercing rivet joint between aluminium and glass fiber reinforced thermoplastic composite [J]. Int J Fatigue,2016,83:127.
9 Xing Baoying. Investigation of forming mechanism and mechanical property of self-pierce riveted joints [D]. Kunming: Kunming University of Science and Technology,2014(in Chinese).
邢保英. 自冲铆连接机理及力学性能研究 [D]. 昆明:昆明理工大学,2014.
10 Gao Zhentong,Fu Huimin,Liang Meixun. A method for fitting S-N curve [J]. J Beijing Univ Aeronaut Astronaut,1987(1):115(in Chinese).
高镇同, 傅惠民, 梁美训. S-N曲线拟合 [J].北京航空航天学报,1987(1):115.
11 Zhang Ming. Research on failure mechanism and control technology of fretting fatigue [D]. Nanjing:Nangjing University of Aeronautics and Astronautics,2013(in Chinese).
张明. 微动疲劳损伤机理及其防护对策的研究 [D]. 南京:南京航空航天大学,2013.
12 周仲荣,Leo Vincent. 微动磨损 [M]. 北京: 科学出版社,2002.
[1] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[2] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[3] 程强, 何晓聪, 邢保英, 张越. 铝锂合金T型自冲铆接头疲劳特性及失效机理*[J]. 《材料导报》期刊社, 2017, 31(12): 84-88.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed