Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22030237-9    https://doi.org/10.11896/cldb.22030237
  无机非金属及其复合材料 |
机器学习在功能梯度材料设计-制备中的应用综述
王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林*
河北工业大学机械工程学院,天津 300401
A Review:Applications of Machine Learning in Design-Fabrication of Functionally Graded Materials
WANG Shijie, YANG Jie, MA Shuo, HAN Shuo, WANG Long, DUAN GuoLin*
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 14665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功能梯度材料作为一类新型复合材料在航空航天、生物医疗等多个先进领域中存在巨大的应用价值,但其在设计与制备的过程中所存在的多维复杂问题制约着其快速发展。大数据驱动的人工智能技术的快速崛起促使传统研发模式向数字化研发转型,数字化研发技术可应对功能梯度材料设计与制备中的复杂问题、不确定性问题,并可大幅提升产品质量、生产效率和降低成本,快速推动着功能梯度材料在多个先进领域中的发展。本文聚焦近年来机器学习技术应用于功能梯度材料领域中的研究现状,并总结了融合不同优化方法解决在功能梯度材料设计与制备中的复杂问题,包含对不同维度变化的材料组分信息的准确反演;对功能梯度材料零件的固有属性、微观结构、材料特征、服役性能进行预测与评价;根据单一或多目标确定与优化材料组分信息以及制备工艺过程参数;以及基于数据驱动方法建立带解释的智能数据库,为获取具有更优良性能的功能梯度材料提供新的设计思路。最后,本文总结了机器学习技术在功能梯度材料设计与制备领域中所存在的主要挑战与发展机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王世杰
杨杰
马硕
韩硕
王龙
段国林
关键词:  功能梯度材料  大数据驱动  数字化研发  机器学习    
Abstract: Functionally graded materials as a novel type of composite material have great application value in many advanced fields such as aerospace, biomedicine, etc. However, the high-dimensional and complex problems existing in the process of design and fabrication restrict their rapid development. The rapid rise of big data-driven artificial intelligence technologies is driving the transformation of traditional research and development (R&D) models to the digital R&D. Digital R&D technologies can address the complexities and uncertainties in the design and fabrication of functionally graded materials, and it can significantly improve product quality, production efficiency and reduce costs, and it is rapidly driving the development of functionally graded materials in a number of advanced fields. This paper focused on recent research in the field of functionally graded materials using machine learning techniques, and summarized the integration of different optimization methods to solve complex problems in the design and preparation of functionally graded materials. It contains the accurate inversion of material components information with different dimensional variations;the prediction and evaluation of natural properties, microstructure, material characteristics and service performance of functionally graded material parts;the determination and optimization of material component information and preparation process parameters based on single or multiple objectives;establishment of intelligent databases with explanation based on the data-driven method, which provide a new design idea for obtaining functionally graded materials with superior properties. Moreover, the main challenges and opportunities of machine learning techniques in the field of functionally graded materials were summarized in this paper.
Key words:  functionally graded material    big data-driven    digital R&D    machine learning
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB34  
基金资助: 中央引导地方科技发展资金项目(216Z1804G)
通讯作者:  *段国林,河北工业大学机械工程学院教授、博士研究生导师。1984 年6 月本科毕业于河北工业大学机械工程学院,1997 年9 月在天津大学机械工程学院取得博士学位。主要从事CAD/CAM、人工智能、增材制造等方面的研究与教学工作。发表论文100余篇,包括Materials Research Express、Journal of Biomedical Engineering、Image and Vision Computing等。glduan@hebut.edu.cn   
作者简介:  王世杰,2021年6月毕业于德累斯顿工业大学,获得工学硕士学位。现为河北工业大学机械工程学院博士研究生,在段国林教授的指导下进行研究。目前主要研究领域为功能梯度材料数字化增材制造。
引用本文:    
王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
WANG Shijie, YANG Jie, MA Shuo, HAN Shuo, WANG Long, DUAN GuoLin. A Review:Applications of Machine Learning in Design-Fabrication of Functionally Graded Materials. Materials Reports, 2023, 37(21): 22030237-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030237  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22030237
1 Bakar W, Basri S, Jamaludin S, et al. World Journal of Dentistry, 2018, 9, 137.
2 Sato M, Inoue A, Shima H. Plos One, 2017, 12(5), e0175029.
3 Marin L. International Journal of Solids and Structures, 2005, 42(15), 4338.
4 Udupa G, Shrikantha S R, Gangadharan K V. In:IEEE-International Conference on Advances In Engineering, Science and Management (ICAESM-2012). Nagapattinam, 2012, pp. 399.
5 Gupta A, Talha M. Progress in Aerospace Sciences, 2015, 79, 1.
6 Matula I, Dercz G, Barczyk J. Materials Science and Technology, 2020, 36(9), 972.
7 El-Galy I M, Saleh B I, Mahmoud H A. SN Applied Sciences, 2019, 1(11), 1378.
8 Nosengo N. Nature, 2016, 533(7601), 22.
9 Carvalho A, Silva T, Loja M A R, et al. Mechanics of Advanced Materials and Structures, 2017, 24(5), 417.
10 Yu J, Wu B. NDT & E International, 2009, 42(5), 452.
11 Jing L, Tian Y. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11), 4037.
12 Ceriotti M. The Journal of Chemical Physics, 2019, 150, 150901.
13 Yu J G. In:2009 International Conference on Measuring Technology and Mechatronics Automation. American, 2009, pp. 202.
14 Wang L W, Chan Y C, Ahmed F, et al. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113377.
15 Li W B, Armani A, Martin A, et al. Journal of the European Ceramic Society, 2021, 41(3), 2049.
16 Xu Y J, Li X Y, Wang X G. Acta Materiae Compositae Sinica, 2013, 30(4), 170 (in Chinese).
许杨剑, 李翔宇, 王效贵. 复合材料学报, 2013, 30(4), 170.
17 Storozhev S V, Storozhev V I, Bolnokin V E, et al. Journal of Physics Conference Series, 2019, 1399(2), 022008
18 Jodaei A, Jalal M, Yas M H. Composites Part B-Engineering, 2012, 43(2), 340.
19 Jodaei A, Jalal M, Yas M H. Mathematical and Computer Modelling, 2013, 57(5-6), 1408.
20 Karsh P K, Mukhopadhyay T, Dey S. Composites Part B-Engineering, 2018, 147, 259.
21 Jalal M, Moradi-Dastjerdi R, Bidram M. Journal of Computational Design and Engineering, 2019, 6(2), 209.
22 Wang Q H, Wu D, Tin Loin F, et al. Thin-Walled Structures, 2019, 144, 106315.
23 Vaishali, Mukhopadhyay T, Karsh P K, et al. Composite Structures, 2020, 237, 111870.
24 Pham H A, Truong V H, Vu T C. Applied Mathematical Modelling, 2020, 88, 852.
25 Pham H A, Truong V H, Tran M T. Structures, 2020, 26, 639.
26 Wang, Q H, Li Q Y, Wu D, et al. Applied Mathematical Modelling, 2020, 78, 792.
27 Feng Y, Wu D, Liu L, et al. Structural Safety, 2020, 86(2), 101974.
28 Nazari A, Milani A A, Khalaj G. Applied Mathematical Modelling, 2012, 36(8), 3903.
29 Nakagaki M, Wu Y D, Hagihara S. Fracture and Strength of Solids, Pts 1 and 2, 1998, 145-9, 333.
30 Nazari A, Khalaj G, Riahi S. Mathematical and Computer Modelling, 2012, 55(3-4), 1339.
31 Nazari A. Materials Research-Ibero-American Journal of Materials, 2012, 15(3), 383.
32 Nazari F, Abolbashari M H. Journal of Solid Mechanics, 2013, 5(1), 14.
33 Khiem N T, Lien T V, Duc N T. Journal of Zhejiang University-Science A, 2021, 22(8), 657.
34 Khatir S, Tiachacht S, Thanh C L, et al. Composite Structures, 2021, 273(12), 114287.
35 Singh A K, Siddhartha, Hussain S. Materials Today-Proceedings, 2015, 2(4-5), 2718.
36 Dikici B, Tuntas R. Journal of Composite Materials, 2021, 55(2), 303.
37 Duong H T, Phan H C, Tran T M, et al. Neural Computing and Applications, 2021, 33(23), 16425.
38 Li K Y, Wu D, Gao W. Computer Methods in Applied Mechanics and Engineering, 2019, 352(3), 1.
39 Liu Z Y, Yang M L, Cheng J, et al. Thin-Walled Structures, 2020, 157(2), 107120.
40 Karsh P K, Mukhopadhyay T, Dey S. Composites Part B-Engineering, 2019, 159, 461.
41 Yas M H, Kamarian S, Pourasghar A. Journal of Experimental & Theoretical Artificial Intelligence, 2014, 26(1), 1.
42 Kamarian S, Yas M H, Pourasghar A, et al. Journal of Experimental & Theoretical Artificial Intelligence, 2014, 26(2), 197.
43 Do D T T, Lee D, Leek J. Composites Part B-Engineering, 2019, 159, 300.
44 Do D T T, Nguyen-Xuan H, Lee J. Applied Mathematical Modelling, 2020, 87, 501.
45 Truong T T, Lee S, Lee J. Composite Structures, 2020, 233, 111517.
46 Tairidis G K, Foutsitzi G, Stavroulakis G E. Complexity and Applications, 2019, 145, 185.
47 Maruani J, Bruant I, Pablo P, et al. Journal of Intelligent Material Systems and Structures, 2019, 30(14), 2065.
48 Susheel C K, Kumar R, Chauhan V S. Smart Materials and Structures, 2016, 25(12), 125018.
49 Kim C, Lee J, Yoo J. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114158.
50 Iasiello M, Bianco N, Chiu W K S, et al. International Journal of Thermal Sciences, 2019, 137, 399.
51 Truong-Thi T, Lee J, Nguyen-Thoi T. Structural and Multidisciplinary Optimization, 2021, 63, 2889.
52 Yin H F, Wen G L, Fang H B, et al. Materials & Design, 2014, 55, 747.
53 Erzurumlu T, Oktem H. Materials & Design, 2007, 28(2), 459.
54 Forsberg J, Nilsson L. International Journal of Impact Engineering, 2006, 32(5), 759.
55 Rajasekaran S, Gayathri S, Lee T L. Ocean Engineering, 2008, 35(16), 1578.
56 Chen Y F, Bai Z H, Zhang L W, et al. Thin-Walled Structures, 2017, 110, 133.
57 Zhang X D, Wang S Q, Liu D Q. Journal of University of Science and Technology Beijing, 2002, 24(6), 630 (in Chinese).
张晓丹, 王三强, 刘冬青. 北京科技大学学报, 2002, 24(6), 630.
58 Liu G H, Bao H, Li W C. Materials Report, 2001, 15(8), 10 (in Chinese).
刘国华, 包宏, 李文超. 材料导报, 2001, 15(8), 10.
59 Cho J R, Shin S W. Composites Part A-Applied Science and Manufactu-ring, 2004, 35(5), 585.
60 Radhika N, Raghu R. Journal of Engineering Science and Technology, 2017, 12(5), 1386.
61 Mohandas A, Radhika N. Tribology in Industry, 2017, 39(2), 145.
62 El-Galy I M, Ahmed M H, Bassiouny B I. Alexandria Engineering Journal, 2017, 56(4), 371.
63 Radhika N, Raghu R. Materialwissenschaft und Werkstofftechnik, 2017, 48(9), 882.
64 Sam M, Radhika N. Particulate Science and Technology, 2019, 37(2), 220.
65 del Val J, Felipe A G, Barro , et al. Procedia Manufacturing, 2017, 13, 169.
66 Yin S, Yan X C, Chen C Y, et al. Journal of Materials Processing Technology, 2018, 255, 650.
67 Naebe M, Shirvanimoghaddam K. Applied Materials Today, 2016, 5, 223.
68 Yan L, Chen Y T, Liou F. Additive Manufacturing, 2020, 31, 100901.
69 Xu X Y, Mu Z C, Wang Z X, et al. Journal of University of Science and Technology Beijing, 1994, 16(5), 464 (in Chinese).
徐雪艳, 穆志纯, 汪朝霞, 等. 北京科技大学学报, 1994, 16(5), 464.
70 Ambigai R, Prabhu S. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2021, 235(18), 3611.
71 Yu C L, Yang H, Zhao D C, et al. Science of Sintering, 2009, 41(3), 257.
72 Irgolic T, Cus F, Paulic M, et al. Procedia Engineering, 2014, 69, 804.
73 Yuan L, Ding S, Wen C. Bioactive Materials, 2019, 4(1), 56.
74 Bodaghi M, Damanpack A R, Liao W H. Materials & Design, 2017, 135, 26.
75 Li W, Zhang J W, Zhang X C, et al. Manufacturing Letters, 2017, 13, 39.
76 Allahyarzadeh M H, Aliofkhazraei M, Aghdam A S R, et al. Canadian Metallurgical Quarterly, 2016, 55(3), 1.
77 Beal V E, Poonjolai E, Hopkinson N, et al. Journal of Materials Proces-sing Technology, 2006, 174(1-3), 145.
78 Eliseeva O V, Kirk T, Samimi P, et al. Materials & Design, 2019, 182(3), 107975.
79 Meng L, McWilliams B, Jarosinski W, et al. JOM, 2020, 72(6), 2363.
80 Chan S L, Lu Y, Wang Y. Journal of Manufacturing Systems, 2018, 46(4), 115.
81 Gobert C, Edward W R, Jan P, et al. Additive Manufacturing, 2018, 21(6), 517.
82 Tian W M, Ma J F, Alizadeh M, E. International Journal of Advanced Manufacturing Technology, 2019, 103(5-8), 3223.
83 Ma J F, Tian W M, Alizadeh M. In:Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec, 2018.
84 Su Y J, Fu H D, Bai Y, et al. Acta Metallurgica Sinica, 2020, 56(10), 1313 (in Chinese).
宿彦京, 付华栋, 白洋, 等. 金属学报, 2020, 56(10), 1313.
85 Niu C C, Li S B, Hu J J, et al. Materials Report, 2020, 34(23), 23100 (in Chinese).
牛程程, 李少波, 胡建军, 等. 材料导报, 2020, 34(23), 23100.
86 Yang L, Su H, Chai F, et al. Materials China, 2019, 38(7), 672 (in Chinese).
杨丽, 苏航, 柴锋, 等. 中国材料进展, 2019, 38(7), 672.
87 Kisara K, Moro A, Kang Y S, et al. In:Functionally graded materials 1996, Shiota I, Miyamoto Y, ed. , Elsevier Science B. V. , Amsterdam, 1997, pp. 99.
88 Kisara K, Konno T, Niino M. Materials Science Forum, 2010, 631-632, 135.
89 Kisara K, Konno T, Niino M. In:CP973, Multiscale and Functionally Graded Materials 2006. American, 2008, pp. 951.
90 Furini F, Rai R, Smith B, et al. In:Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Charlotte, 2016.
91 Zhang X J, Chen K Z, Feng X A. Materials & Design, 2008, 29(6), 1131.
92 Larsen U D, Signund O, Bouwsta S. Journal of Microelectromechanical Systems, 1997, 6(2), 99.
93 Murphy R, Imediegwu C, Hewson R, et al. Structural and Multidisciplinary Optimization, 2021, 63(4), 1721.
[1] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[2] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[3] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[4] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[5] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[6] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[7] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[8] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[9] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报, 2022, 36(10): 20030137-7.
[10] 宋庆功, 常斌斌, 董珊珊, 顾威风, 康建海, 王明超, 刘志锋. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36(1): 20080139-7.
[11] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[12] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[13] 米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生. 机器学习技术在材料科学领域中的应用进展[J]. 材料导报, 2021, 35(15): 15115-15124.
[14] 牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108.
[15] 康靓, 米晓希, 王海莲, 吴璐, 孙凯, 汤爱涛. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed