Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8207-8212    https://doi.org/10.11896/cldb.20020113
  高分子与聚合物基复合材料 |
基于分子指纹及机器学习回归模型的有机光伏材料效率预测
郑玉杰1,†, 梁鑫斌1,†, 张起1, 孙文博1, 施童超2,3, 杜鹃2,3, 孙宽1
1 重庆大学能源与动力工程学院,低品位能源利用技术及系统教育部重点实验室,重庆 400044
2 中国科学院上海光学精细机械研究所高场激光物理国家重点实验室,上海 201800
3 中国科学院大学材料科学与光电子工程中心,北京 100049
Efficiency Prediction for Organic Photovoltaic Cells Using Molecular Fingerprints and Machine Learning Regression Models
ZHENG Yujie1,†, LIANG Xinbin1,†, ZHANG Qi1, SUN Wenbo1, SHI Tongchao2,3, DU Juan2,3, SUN Kuan1
1 MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 4398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机太阳能电池(OPV)的发展依赖于新型高效OPV材料的开发。近几年来,为解决传统有机太阳电池材料开发模式低效的问题,机器学习辅助OPV材料开发的新模式得到了广泛的关注。本工作提出一种结合分子指纹和机器学习回归模型的新方法,实现了OPV给体材料光电转换效率的快速预测。基于从文献中收集的给体材料数据库,系统地比较了不同分子指纹作为各种机器学习模型输入的预测精度。结果表明,Morgan分子指纹与随机森林模型的组合在决定系数指标下性能最优,而Hybridization分子指纹与支持向量机模型的组合在平均绝对误差指标下性能最优。同时,各模型的预测精度随着分子指纹的位数增加而提高。该方法可广泛用于新设计的OPV材料的快速初筛,从而提升新型OPV材料的研发速度,促进高性能OPV的快速发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑玉杰
梁鑫斌
张起
孙文博
施童超
杜鹃
孙宽
关键词:  有机太阳能电池  给体材料  光电转换效率预测  机器学习  分子指纹  回归模型    
Abstract: The development of organic photovoltaics (OPV) relies heavily on the new discovery of efficient OPV materials. In recent years, machine learning-assisted OPV material development has received wide attention, to overcome the inefficiency of traditional development mode. Herein, we proposed a new method that combines molecular fingerprints and regression models to achieve rapid prediction of the power conversion efficiency of newly-designed OPV donor materials. Based on the latest donor material database collected from the Web of Science database, the prediction accuracies of different combinations of molecular fingerprints and various machine learning regression models were compared systematically. We found that the combination of Morgan fingerprint and random forest model performs the best under the R-squared evaluation. And the combination of Hybridization fingerprint and support vector machine model performs the best under the mean absolute error evaluation. Moreover, a general trend is that the prediction accuracy of all models increases as the length of the molecular fingerprint increases. This method can be useful for preliminary screening of new OPV materials in a fast manner, and thus promotes the development of high-performance OPVs through accelerating the development of new OPV materials.
Key words:  organic photovoltaics    donor material    power conversion efficiency prediction    machine learning    molecular fingerprint    regression model
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB303  
基金资助: 国家自然科学基金(62074022;12004057);重庆市自然科学基金(cstc2018jszx-cyzd0603);重庆市“留学人员创业创新支持计划”(cx2017034);中央高校基本科研业务费(2020CDJQY-A055);低品位能源利用技术及系统教育部重点实验室开放基金(LLEUTS-2020008)
通讯作者:  kuan.sun@cqu.edu.cn;dujuan@mail.siom.ac.cn   
作者简介:  郑玉杰,重庆大学能源与动力工程学院讲师。他先后获得四川大学学士学位和新加坡国立大学博士学位。研究专长为计算材料和机器学习。
梁鑫斌,本科生,于重庆大学能源与动力工程学院学习,主要从事机器学习方面的研究。
杜鹃,研究员,博士研究生导师。2004—2007年在中国科学院上海光学精密机械研究所攻读博士,获光学专业博士学位。2007—2010年在日本电气通信大学先进超快激光中心做博士后,并于2010年被提升为日本电气通信大学助理教授。2013年由上海光机所以“百人计划”引进,2014年5月获得中科院择优支持。主要研究方向为飞秒激光技术及其在化学、生物体系中超快分子动力学研究中的应用。
孙宽,重庆大学能源与动力工程学院副院长,低品位能源利用技术及系统教育部重点实验室副主任。2012年取得新加坡国立大学博士学位。随后在澳大利亚墨尔本大学、澳大利亚同步加速器、莫纳什大学及墨尔本纳米制备中心、德国卡尔斯鲁厄理工学院和马普所高分子研究所开展研究。2014年作为“百人计划”学者加入重庆大学。长期从事可再生能源高效利用原理及技术的研究。
引用本文:    
郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
ZHENG Yujie, LIANG Xinbin, ZHANG Qi, SUN Wenbo, SHI Tongchao, DU Juan, SUN Kuan. Efficiency Prediction for Organic Photovoltaic Cells Using Molecular Fingerprints and Machine Learning Regression Models. Materials Reports, 2021, 35(8): 8207-8212.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020113  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8207
1 Min H S. Australian Journal of Basic & Applied Sciences,2016,10(8),21.
2 Kang Z, Chen S C, Ma Y, et al. ACS Applied Materials & Interfaces,2017,9(29),24771.
3 Zhang S J, Gao J H, Wang W, et al. ACS Applied Energy Materials,2018,1(3),1276.
4 Soultati A, Fakharuddin A, Polydorou E, et al. ACS Applied Energy Materials,2019,2(3),1663.
5 Cao H D, Bauer N, Pang C, et al. ACS Applied Energy Materials,2018,1(12),7146.
6 Sun W B, Zheng Y J, Yang K, et al. Science Advances,2019,5(11),4275.
7 Butler T K, Davies W D, Hugh C, et al. Nature,2018,559(7715),547.
8 Nagasawa S, Al N E, Saeki A. Journal of Physical Chemical Letters,2018,9(10),2639.
9 Sun W B, Li M, Li Y, et al. Advanced Theory and Simulations,2019,2(1),1800116.
10 Hachmann J, Olivares A R, Atahan E S, et al. The Journal of Physical Chemistry Letters,2011,2(17),2241.
11 Jorgensen P B, Mesta M, Shil S, et al. Journal of Chemical Physics,2018,148(24),241735.
12 Sahu H, Rao W N, Troisi A, et al. Advanced Energy Materials,2018,8(24),1801032.
13 Lee M H. Advanced Energy Materials,2019,9(26),1900891.
14 Márton Vass, Albert J Kooistra, Tina Ritschel, et al. Current Opinion in Pharmacology,2016,30,59.
15 Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, et al. Me-thods,2015,71,58.
16 Muegge I, Mukherjee P. Expert Opinion on Drug Discovery,2015,11(2),137.
17 Kyaw-Zeyar Myint, Lirong Wang, Qin Tong, et al. Molecular Pharmaceutics,2012,9(10),2912.
18 Youngsoo Lee, Heather L Miller, Patricia Jensen, et al. Cancer Research,2003,63(17),5428.
19 O Anatole Von Lilienfeld, Raghunathan Ramakrishnan, Matthias Rupp, et al. International Journal of Quantum Chemistry,2015,115(16),1084.
20 Mellor C L, Marchese Robinson R L, Benigni R, et al. Regulatory Toxi-cology and Pharmacology,2019,101,121.
21 Zhang X B, King M L, Hyndman R J. Computational Statistics & Data Analysis,2006,50(11),3009.
22 Friedman J H. Annals of Statistics,2001,29(5),1189.
23 Breiman L. Machine Learning,2001,45(1),5.
24 Geurts P, Ernst D, Wehenkel L. Machine Learning,2006,63(1),3.
25 Quinlan J R. IEEE Transactions on Systems, Man, and Cybernetics,1990,20(2),339.
26 Jain A K, Mao J C, Mohiuddin K M. Computer,1996,29(3),31.
27 Cortes C, Vapnik V. Machine Learning,1995,20(3),273.
28 Chang C C, Lin C J. ACM Transactions on Intelligent Systems and Technology,2011,2(3),1.
29 Pedregosa F, Varoquaux G, Gramfort A, et al. Journal of Machine Lear-ning Research,2011,12,2825.
30 Cereto M A, Ojeda M J, Valls C, et al. Methods,2015,71,58.
31 Li Z J, Wan H G, Shi Y H, et al. Journal of Chemical Information and Computer Sciences,2004,44(5),1886.
32 Weininger D. Journal of Chemical Information and Modeling,1988,28(1),31.
33 Dong J, Cao D S, Miao H Y, et al. Journal of Cheminform,2015,7,60.
34 Guilherme F S, Marcos D V. Tree Genetics & Genomes,2020,16(2),37.
35 Chen D Y, Liu X H, Zhou Y P, et al. Journal of Applied Polymer Science,2000,76(4),481.
36 Florea A C, Andonie R. International Journal of Computers Communications & Control,2019,14(2),154.
37 Srinivas N, Krause A, Kakade S M, et al. IEEE Transactions on Information Theory,2012,58(5),3250.
38 Hinton G, Deng L, Yu D, et al. IEEE Signal Processing Magazine,2012,29(6),82.
39 Yu S Y, Wu Y, Li W, et al. Neurocomputing,2017,257,97.
[1] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[2] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[3] 牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108.
[4] 康靓, 米晓希, 王海莲, 吴璐, 孙凯, 汤爱涛. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
[5] 侯永强, 尹升华, 曹永, 戴超群. 基于RSM-BBD的混合骨料胶结充填体强度增长规律分析[J]. 材料导报, 2020, 34(14): 14063-14069.
[6] 易金权, 曾凯, 邢保英, 冯煜阳, 翟停停. DP780高强钢胶接点焊的多元非线性回归模型[J]. 材料导报, 2020, 34(11): 11071-11075.
[7] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[8] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[9] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[10] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[11] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[12] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[13] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed