Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3204-3208    https://doi.org/10.11896/cldb.19090087
  高分子与聚合物基复合材料 |
有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展
张意晨, 徐海涛, 赵春辉
南昌航空大学材料与科学工程学院,南昌 330063
Research Progress of PEDOT∶PSS Hole Transport Layer and Its Modification for Organic Solar Cells
ZHANG Yichen, XU Haitao, ZHAO Chunhui
College of Materials and Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 2585KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机太阳能电池具有低成本、轻量化、柔性化等优点,是未来对太阳能合理有效利用的最佳方式之一。空穴传输层作为有机太阳能电池的关键组成部分,具有调节OSCs活性层与电极间的能级势垒、提高空穴载流子的收集与传输、OSCs的稳定性与光伏转换效率的作用。
聚3, 4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT∶PSS)是目前广泛使用的有机太阳能电池空穴传输层材料,具有可溶液加工、高透光性、能级匹配等突出优点,但同时也存在电导率低、腐蚀电极、水/氧敏感等缺陷。目前针对PEDOT∶PSS缺陷的改性方法主要有通过使用有机溶剂或酸处理,减弱PEDOT与PSS间的相互作用,促进PEDOT与PSS相分离提高电导率,以及掺杂高导性材料、离子液体和盐等方式提高PEDOT∶PSS的介电常数;引入交联剂等方式提高PEDOT∶PSS的疏水性,降低吸水性倾向;PEDOT∶PSS显酸性,而在PEDOT∶PSS与电极间插入修饰层,可避免PEDOT∶PSS与电极直接接触引起电极的腐蚀。
本文综述了近年来改善PEDOT∶PSS电导率、酸性以及水和空气敏感性的各种方法:掺杂、复合及补充修饰层等后处理方法。目前改性方法虽然可以克服PEDOT∶PSS存在的某一缺陷,但不同后处理工艺差别巨大,工艺通用性受到限制。同时,本文还讨论了改性PEDOT∶PSS与电池性能之间的关系,阐述了PEDOT∶PSS的改性原则;提出在制备阶段调控PEDOT与PSS的相分离的前处理方法且该方法可以改善PEDOT∶PSS膜的形貌与均匀性,亦可弥补目前的后处理方法的不足,以及改变PEDOT链的构象,来克服PEDOT∶PSS低电导率、水和空气敏感、腐蚀电极等缺陷,促进基于PEDOT∶PSS有机太阳能电池大面积生产工艺的产业化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张意晨
徐海涛
赵春辉
关键词:  有机太阳能电池  空穴传输层  聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐  改性    
Abstract: Organic solar cells are one of the best ways to use solar energy reasonably and efficiently in the future owing to their advantages of low cost, light weight and flexibility etc. The hole transport layer can improve the collection and transport of hole carriers, adjust the energy barrier between the active layer and the electrode, and block electrons to reduce charge recombination, which is a key component of the organic solar cells.
The poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT∶PSS) is widely used organic solar cell hole transport layer materials at present, which has the outstanding advantages of solution processing, high transparency and suitable work function. However, PEDOT∶PSS also has some defects, such as low conductivity, strong acid and sensitive to water and air. The modifications of organic solvents, acids, ionic liquids, and salts, which can reduce the interaction between PEDOT and PSS, and promote the phase separation of PEDOT and PSS. Crosslin-king agent was introduce to reduce the water absorption of PEDOT∶PSS, the modified layer introducd between PEDOT∶PSS and the electrode was to avoid corroding the electrode.
In this paper, the modifications of improving conductivity, acidity and sensitivity to water and air for PEDOT∶PSS in recent years are reviewed, such as doping, compounding and supplementary modification of post-treatment methodsetc. Although post-treatment methods can overcome a certain defect of PEDOT∶PSS, there are great differences among different post-treatment processes, and the process universality is limited. The relationship between modified PEDOT∶PSS and battery performance is discussed, and the modification principle of PEDOT∶PSS is expounded. We propose to regulate the phase separation of PEDOT and PSS during pretreatment methods improving morphology and uniformity of the PEDOT∶PSS film, and can avoid the shortcomings of current post-processing methods, as well as the change of PEDOT chain conformation method to overcome the PEDOT∶PSS low electrical conductivity, corrosion, water and air sensitive electrode defects, promoting industrialization of large-area production processes based on PEDOT∶PSS organic solar cells.
Key words:  organic solar cells    hole transport layer    poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)    modification
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  O63  
基金资助: 国家自然科学基金(21965022)
作者简介:  张意晨,现为南昌航空大学材料科学与工程学院硕士研究生,在徐海涛副教授的指导下进行研究。目前主要研究领域为有机太阳能电池空穴传输层材料的制备及其改性。
徐海涛,南昌航空大学副教授、硕士研究生导师。2008年6月在吉林大学取得博士学位。2014年进入江西省新能源化学重点实验室进行博士后研究工作。主要从事有机光电材料、热电材料与器件的研究工作。近年来,在有机光电材料与器件领域发表多篇论文。
赵春辉,1986年出生于中国江西南昌。2016年获得筑波大学材料科学与工程博士学位,师从Takeuchi教授和Sugiyasu教授。2016年加入了国家材料科学研究所有机材料组,担任博士后研究员。2018年起担任南昌航空大学副教授。目前研究兴趣集中在功能高分子材料的设计和制造。
引用本文:    
张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
ZHANG Yichen, XU Haitao, ZHAO Chunhui. Research Progress of PEDOT∶PSS Hole Transport Layer and Its Modification for Organic Solar Cells. Materials Reports, 2021, 35(3): 3204-3208.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090087  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3204
1 Kim J Y, Lee K, Coates N E, et al.Science,2007,317(5835),222.2 Dennler G, Scharber M C, Brabec C J.Advanced Materials,2009,21(13),1323.3 Lipomi D J, Tee B C K, Vosgueritchian M, et al.Advanced Materials,2011,23(15),1771.4 Liang Y, Xu Z, Xia J, et al.Advanced Materials,2010,22(20),E135.5 McNeill C R, Abrusci A, Zaumseil J, et al.Applied Physics Letters,2007,90(19),193506.6 Tahk D, Lee H H, Khang D Y.Macromolecules,2009,42(18),7079.7 Krebs F C, Carlé J E, Cruys-Bagger N, et al.Solar Energy Materials & Solar Cells,2005,86(4),499.8 Yu G, Gao J, Hummelen J C, et al.Science,1995,270(5243),1789.9 Tang C W.Applied Physics Letters,1986,48(2),183.10 Meng L, Zhang Y, Wan X, et al.Science,2018,361(6407),1094.11 Yin Z, Wei J, Zheng Q.Advanced Science,2016,3(8),1500362.12 Sun Y, Seo J H, Takacs C J, et al.Advanced Materials,2011,23(14),1679.13 Zhou H, Zhang Y, Mai C K, et al.Advanced Materials,2014,26(5),780.14 Yip H L, Jen A K Y.Energy & Environmental Science,2012,5(3),5994.15 Yin Z, Zheng Q.Advanced Energy Materials,2012,2(2),179.16 Škraba P, Bratina G, Igarashi S, et al.Thin Solid Films,2011,519(13),4216.17 Wong K W, Yip H L, Luo Y, et al.Applied Physics Letters,2002,80(15),2788.18 Norrman K, Madsen M V, Gevorgyan S A, et al.Journal of the American Chemical Society,2010,132(47),16883.19 Zou J, Yip H L, Hau S K, et al.Applied Physics Letters,2010,96,203301.20 Lee S H, Park H, Kim S, et al.Journal of Materials Chemistry A,2014,2(20),7288.21 Wu F, Li P, Sun K, et al.Advanced Electronic Materials,2017,3(7),1700047.22 Zhao Z, Wu Q, Xia F, et al.ACS Applied Materials & Interfaces,2015,7(3),1439.23 Kadem B, Cranton W, Hassan A.Organic Electronics,2015,24,73.24 Döbbelin M, Marcilla R, Salsamendi M, et al.Chemistry of Materials,2007,19(9),2147.25 Toshima N, Ichikawa S.Journal of Electronic Materials,2015,44(1),384.26 Ha S R, Park S, Oh J T, et al.Nanoscale,2018,10(27),13187.27 Hilal M, Han J I.Solar Energy,2018,167,24.28 Mohammad T, Bharti V, Kumar V, et al.Organic Electronics,2019,66,242.29 Xia Y, Ouyang J.Organic Electronics,2010,11(6),1129.30 Zhang W, Zhao B, He Z, et al.Energy & Environmental Science,2013,6(6),1956.31 Xiao S, Chen L, Tan L, et al.The Journal of Physical Chemistry C,2015,119(4),1943.32 Shi H, Liu C, Jiang Q, et al.Advanced Electronic Materials,2015,1(4),1500017.33 Lombardo V, D'Urso L, Mannino G, et al.Polymer,2018,155,199.34 Xia Yijie, Sun Kuan, Ouyang Jianyong.Advanced Materials,2012,24,2436.35 Kim N, Kang H, Lee J H, et al.Advanced Materials,2015,27(14),2317.36 Meng W, Ge R, Li Z, et al.ACS Applied Materials & Interfaces,2015,7(25),14089.37 Ouyang J.ACS Applied Materials & Interfaces,2013,5(24),13082.38 Mengistie D A, Ibrahem M A, Wang P C, et al.ACS Applied Materials & Interfaces,2014,6(4),2292.39 Fan X, Xu B, Liu S, et al.ACS Applied Materials & Interfaces,2016,8(22),14029.40 Shi H, Liu C, Jiang Q, et al.Advanced Electronic Materials,2015,1(4),1500017.41 Huang D, Goh T, Kong J, et al.Nanoscale,2017,9(12),4236.42 Kim G H, Shao L, Zhang K, et al.Nature Materials,2013,12(8),719.43 Timpanaro S, Kemerink M, Touwslager F J, et al.Chemical Physics Letters,2004,394(4-6),339.44 Yu Z, Xia Y, Du D, et al.ACS Applied Materials & Interfaces,2016,8(18),11629.45 Eom S H, Senthilarasu S, Uthirakumar P, et al.Organic Electronics,2009,10(3),536.46 Kim K J, Kim Y S, Kang W S, et al.Solar Energy Materials and Solar Cells,2010,94(7),1303.47 Hu Z, Zhang J, Hao Z, et al.Solar Energy Materials and Solar Cells,2011,95(10),2763.48 Peng B, Guo X, Cui C, et al.Applied Physics Letters,2011,98(24),113.49 Xia Y, Ouyang J.ACS Applied Materials & Interfaces,2012,4(8),4131.50 Li W, Zhang X, Zhang X, et al.ACS Applied Materials & Interfaces,2017,9(2),1446.51 Lingstedt L V, Ghittorelli M, Lu H, et al.Advanced Electronic Materials,2019,5(3),1800804.52 Thomas J P, Zhao L, McGillivray D, et al.Journal of Materials Chemistry A,2014,2(7),2383.53 Thomas J P, Leung K T.Journal of Materials Chemistry A,2016,4(44),17537.54 Li J, Liu J, Gao C, et al.International Journal of Photoenergy,2009,18(5),1.55 Yoo D, Kim J, Lee S H, et al.Journal of Materials Chemistry A,2015,3(12),6526.56 Xing W, Chen Y, Wu X, et al.Advanced Functional Materials,2017,27(32),1701622.57 Wang Y, Wang H, Xu J, et al.Polymer Composites,2018,39(9),3066.58 Amollo T A, Mola G T, Nyamori V O.Solar Energy,2018,171,83.59 Ji T, Tan L, Hu X, et al.Physical Chemistry Chemical Physics,2015,17(6),4137.60 Zheng Z, Hu Q, Zhang S, et al.Advanced Materials,2018,30(34),1801801.61 Thomas J P, Rahman M A, Srivastava S, et al.ACS Nano,2018,12(9),9495.62 Fan B, Mei X, Ouyang J.Macromolecules,2008,41(16),5971.63 Xu B, Gopalan S A, Gopalan A I, et al.Scientific Reports,2017,7,45079.64 Kumar V, Swami S K, Kumar A, et al.Journal of Colloid and Interface Science,2016,484,24.65 Fouad H, Ansari S G, Khan A A, et al.Journal of Materials Science: Materials in Electronics,2017,28(9),6873.66 Norrman K, Madsen M V, Gevorgyan S A, et al.Journal of the American Chemical Society,2010,132(47),16883.67 Ha S R, Park S, Oh J T, et al.Nanoscale,2018,10(27),13187.68 Hilal M, Han J I.Solar Energy,2018,167,24.69 Nardes A M, Kemerink M, De Kok M M, et al.Organic Electronics,2008,9(5),727.70 Hu X, Chen L, Chen Y.The Journal of Physical Chemistry C,2014,118(19),9930.71 Rafique S, Abdullah S M, Shahid M M, et al.Scientific Reports,2017,7,39555.72 Shao S, Liu J, Bergqvist J, et al.Advanced Energy Materials,2013,3(3),349.
[1] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[2] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[3] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[4] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[5] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[6] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[7] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[8] 卢家成, 刘嘉良, 李威翰, 李飞. 生土建筑与材料研究现状[J]. 材料导报, 2020, 34(Z2): 269-272.
[9] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[10] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[11] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[12] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[13] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[14] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[15] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed