Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2178-2184    https://doi.org/10.11896/cldb.19070108
  高分子与聚合物基复合材料 |
不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能
王森1, 赖家美1, 阮金琦1, 胡根泉1, 黄志超2
1 南昌大学机电工程学院,聚合物成型研究室,南昌 330031;
2 华东交通大学,载运工具与装备教育部重点实验室,南昌 330013
Low Speed Impact and Compression Properties of Epoxy Based Carbon Fiber Composite Modified by Different Particles
WANG Sen1, LAI Jiamei1, RUAN Jinqi1, HU Genquan1, HUANG Zhichao2
1 Polymer Processing Research Laboratory, School of Mechanical and Electric Engineering, Nanchang University, Nanchang 330031, China;
2 Key Laboratory for Conveyance and Equipment of the Ministry of Education, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 7052KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 使用单层纳米氧化石墨烯(GO)、纳米SiO2、陶瓷粉对环氧树脂进行改性处理,采用真空辅助树脂传递模塑成型(VARTM)工艺分别制备了[±45/0/90]S、[908]T、[08]T三种铺层角度下的碳纤维增强复合材料(CFRP)层合板。通过落锤冲击实验、超声C扫描检测、冲击后压缩实验等对不同粒子改性CFRP进行实验研究。结果表明:纳米粒子改性可以显著提升CFRP的抗冲击性能及冲击后压缩性能,与其他铺层角度相比,[±45/0/90]S铺层CFRP有效抑制了冲击裂纹的扩展,且单层纳米GO改性下的[±45/0/90]S铺层层合板最大冲击载荷及冲击后压缩强度分别达到3 470 N、124.8 MPa,冲击损伤面积仅有580 mm2。与无粒子改性同种铺层层合板相比,最大冲击载荷及冲击后压缩强度相应提高了30%、47.3%,冲击损伤面积减小了15.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王森
赖家美
阮金琦
胡根泉
黄志超
关键词:  纤维增强  粒子改性  冲击性能  冲击后压缩性能    
Abstract: Epoxy resin was modified by single-layer nano graphene oxide (GO), nano SiO2 and ceramic powder particles. Carbon fiber reinforced composite (CFRP) laminates were prepared by vacuum assisted resin transfer molding (VARTM) process at three ply angles of [±45/0/90]S, [908]T, [08]T respectively. Through drop hammer impact test, ultrasonic C scan test and post-impact compression test, experimental research on different particle modified CFRP was carried out. The results show that nano-particle modification can significantly improve the impact resis-tance and post-impact compression performance of CFRP. Compared with other ply angles, [±45/0/90]S ply CFRP effectively inhibits the propagation of impact cracks, and the maximum impact load and post-impact compression strength of the [±45/0/90]S ply laminate modified by single-layer nano GO reach 3 470 N and 124.8 MPa respectively, with an impact damage area of only 580 mm2. Compared with the same kind of laminate without particle modification, the maximum impact load and the compressive strength after impact are increased by 30%, 47.3% and the impact damage area is reduced by 15.5%.
Key words:  fiber reinforcement    particle modification    impact property    post-impact compression property
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51763016);江西省创新驱动“5511”工程科技创新人才项目(20165BCB18012)
通讯作者:  laijm@163.com   
作者简介:  王森,2017年9月至2020年6月就读于南昌大学,主要从事聚合物成型方面的研究。
赖家美,南昌大学机电工程学院,副教授。2004年毕业于南昌大学,材料加工工程专业博士学位,主要从事聚合物基复合材料制备和性能研究,主持国家自然科学基金2项、江西省青年科学家培养对象计划项目1项、省(部)级科研项目3项等。
引用本文:    
王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
WANG Sen, LAI Jiamei, RUAN Jinqi, HU Genquan, HUANG Zhichao. Low Speed Impact and Compression Properties of Epoxy Based Carbon Fiber Composite Modified by Different Particles. Materials Reports, 2021, 35(2): 2178-2184.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070108  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2178
1 Afzal A, Siddiqi H M. Polymer, 2011, 52(6), 1345.
2 Liu Q, Zhou X, Fan X, et al. Polymer-Plastics Technology and Engineering, 2012, 51(3), 251.
3 Park S J, Li K, Hong S K. Solid State Phenomena, 2006, 111, 159.
4 Yao H W, Zhong S G, Li X H, et al. Materials Engineering, 2016, 44(12), 13(in Chinese).
姚红伟, 钟盛根, 李显华, 等. 材料工程, 2016, 44(12), 13.
5 Sui X H, Shi J, Yao H W, et al. Composites, Part A. Applied Science and Manufacturing, 2017, 92A, 134.
6 Zhao Z B, Teng K Y, Li N, et al. Composite Structures, 2017, 159(1), 761.
7 Chen L, Jin H, Xu Z W, et al. Journal of Materials Science, 2015, 50(1), 112.
8 Li N, Yang X X, Bao F, et al. Polymers, 2019, 11(2), 237.
9 Dang C Y, Ma J L, Wu Y Q, et al. FRP, 2017(2), 1(in Chinese).
党晨阳, 马俊丽, 吴银秋, 等. 玻璃钢, 2017(2), 1.
10 Zhou H, Piao M X, Li Q, et al. Acta Materiae Compositae Sinica, 2015, 32(5), 1309(in Chinese).
周宏, 朴明昕, 李芹, 等. 复合材料导报, 2015, 32(5), 1309.
11 Liu J C, Zhang H L, Li X B, et al. Synthetic Resins and Plastics, 2002, 19(1), 30(in Chinese).
刘竞超, 张华林, 李小兵, 等. 合成树脂及塑料, 2002, 19(1), 30.
12 Asi O. Composite Structures, 2010, 92(2), 354.
13 Naous W, Yu X Y, Zhang Q X, et al. Journal of Polymer Science Part B Polymer Physics, 2006, 44(10), 1466.
14 Schoeppner G A, Abrate S. Composites, Part A. Applied Science and Manufacturing, 2000, 31A(9), 903.
15 Hu J Y. Study on low speed impact characteristics and damage mechanism of fabric composites. Master's Thesis, Harbin University of Technology, China, 2010(in Chinese).
胡靖元. 织物复合材料低速冲击特性与损伤机理研究. 硕士学位论文,哈尔滨工业大学, 2010.
16 Wu G S, Ma L C, Wang Y W,et al. Composites, Part A. Applied Science and Manufacturing, 2016, 84A, 1.
17 Ji Soo Kwon, Ji Sun Kim, Hak Sung Lee, et al. Journal of Nanoscience and Nanotechnology, 2019, 19(2), 882.
18 Zhang H, Tang L C, Zhang Z et al. Polymer, 2008, 49(17), 3816.
19 Ma J, Mo M S, Du X S,et al. Polymer, 2008, 49(16), 3510.
20 Ghosh P, Pathak A, Goyat M,et al. Journal of Reinforced Plastics and Composites, 2012, 31(17), 1180.
21 Sarasini F, Tirillò J, Valente M, et al. Materials & Design, 2013, 49, 290.
22 Wang J. Composite material foam sandwich structure under low velocity impact and impact compression properties. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese).
王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究.博士学位论文,上海交通大学, 2013.
23 He Y B. Research on low energy impact damage and dynamic response of typical structures of aviation composite materials. Ph.D. Thesis, South China University of Technology, China, 2016(in Chinese).
何艳斌. 航空复合材料典型结构低能量冲击损伤及动力响应研究.博士学位论文, 华南理工大学, 2016.
[1] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[2] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[3] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[4] 龚明, 张代军, 刘燕峰, 张嘉阳, 李军, 陈祥宝. 纤维增强热塑性复合材料原位聚合成型技术研究进展[J]. 材料导报, 2020, 34(21): 21180-21187.
[5] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[6] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[7] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
[8] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[9] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[10] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[11] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[12] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[13] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[14] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[15] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed