Research Status of Cu-Ag Alloy In-situ Filamentary Composites
HE Qinsheng1,2, ZOU Xingzheng1,2, LI Fang1,2, TANG Rui1,2, ZHAO Anzhong1,2, TIAN Shilong3
1 Chongqing Materials Research Institute Co., Ltd., Chongqing 400707; 2 National Instrument Functional Materials Engineering Technical Research Center, Chongqing 400707; 3 School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331
Abstract: A magnet coil can produce strong magnetic field, under which the research of condensed matter physics, materials science, chemistry and bioscience can be carried out. High magnetic field technology, especially pulsed high magnetic field technology, requires materials with high thermal conductivity, high conductivity and high strength to serve as coils, and Cu-Ag alloy in-situ filamentary composites emerged with a retrospection back to 1960s or 1970s. It is a nanocrystalline dual phase composite material which shows higher strength and thermal stability than single-phase material, and also has strong conductivity. After half a century of development, it has found wide application in frame materials, contact lines, and joints, etc. The Ag content of Cu-Ag alloy in situ filamentary composites has been decreased from 80wt% initially to 10wt%—30wt%, which fully controls the cost, and the compo-sites still maintain considerable electrical and mechanical properties. In the meantime, the effects of structure and morphology evolution during severe plastic deformation, phase interface, phase spacing and phase size on the composites’ performance have been stu-died in detail, and appropriate heat treatment technique has been established which could solve the problem of mutual exclusive between high conductivity and high strength. In order to further improve the comprehensive properties such as strength and plasticity, researchers also made attempts and achievements in adding third or even fourth microalloying elements such as Cr, Nb, Zr, Y, Gd and Ce to simultaneously substitute for Ag and produce more beneficial effects. However, there are still some shortcomings in the early research: Ⅰ. the lack of more in-depth research from a more microsco-pic view; Ⅱ. relatively complex and time-consuming procedure for the traditional multi-pass plastic processing; Ⅲ. not universally applicable theoretical model for performance prediction. Therefore, in the past seven years, apart from the comprehensive study of the drawing, rolling and heat treatment, the research is mainly concentrated upon performance changes induced by directional solidification under magnetic field, severe plastic deformation, lower Ag content and other alloying elements, as well as the adoption of more advanced analysis and characterization techniques. It has been found that directional solidification can change the growth mode of crystals, adjust the size and spacing of dendrite and the volume fraction of eutectic structure, and consequently further improve the performance. Equal channel angular pressing (ECAP), high-pressure torsion (HPT) and other techniques of severe plastic deformation also have been applied to Cu-Ag alloy, which resulted in more refined grains and more favorable comprehensive properties. This opens up an approach to the short-process fabrication of Cu-Ag in-situ filamentary composites. Those considerable achievements enable Ag content to be reduced to less than 10wt%, which has been successfully applied to high magnetic field generation in Japan. And moreover, from a more microscopic view (such as molecular- or even atomic-scale), researchers also have revealed the mechanism of formation and evolution of dislocation, twinning and texture in the preparation process. Focusing on the matching relationship between strength and conductivity of Cu-Ag in-situ filamentary composites, this paper reviews the research status in this field, and discusses the development prospect and the existing problems.
1 Dew-Hughes D. High strength conductor for pulsed magnets[J].Materials Science & Engineering A,1993,168(1):35. 2 Mattissen D, Raabe D, Heringhaus F. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ, composite[J].Acta Materialia,1999,47(5):1627. 3 Li Z D, Zhang L, Meng L. Effect of rare earth elements on microstructure of Cu-6%Ag and Cu-24%Ag alloys[J].Journal of the Chinese Society of Rare Earths,2005,23(3):334(in Chinese). 李振铎,张雷,孟亮.稀土元素对Cu-6%Ag及Cu-24%Ag合金微观组织的影响[J].中国稀土学报,2005,23(3):334. 4 Wood J T, Embury J D, Ashby M F. An approach to materials processing and selection for high-field magnet design[J].Acta Materialia,1997,45(3):1099. 5 Callister W D, Rethwisch J R, David G. Materials science and engineering: An introduction 8th Ed[M].Hoboken:Wiley,2010. 6 Raabe D, Mattissen D. Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J].Acta Materialia,1999,47(3):769. 7 Zhao D M, Dong Q M, Liu P. Exploring for optimum composition of copper alloy with high strength and electrical conductivity[J].Journal of Functional Materials,2001,32(6):609(in Chinese). 赵冬梅,董企铭,刘平.探索高强高导铜合金最佳成分的尝试[J].功能材料,2001,32(6):609. 8 Han Y, Zeng W, Qi Y. Optimization of forging process parameters of Ti600 alloy by using processing map[J].Materials Science & Engineering A,2011,529(1):393. 9 Huang C Q. On contact wire line used in catenary of high speed whee-rail electrified railway[J].China Railway Science,2001,22(1):1(in Chinese). 黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学,2001,22(1):1. 10 Dai J Y. Preparation and relative basic research on the copper alloy with high strength and high conductivity[D].Changsha:Central South University,2009(in Chinese). 戴姣燕.高强导电铜合金制备及其相关基础研究[D].长沙:中南大学,2009. 11 Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper[J].Science,2004,304(5669):422. 12 Heringhaus F, Raabe D. Recent advances in the manufacturing of copper-base composites[J].Journal of Materials Processing Techno-logy,1996,59(4):367. 13 Heringhaus F, Schneider-Muntau H J, Gottstein G. Analytical mo-deling of the electrical conductivity of metal matrix composites: Application to Ag-Cu and Cu-Nb[J].Materials Science & Engineering A,2003,347(1):9. 14 Gluchowski W, Stobrawo J P, Rdzawski Z, et al. Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires[J].Journal of Achievements in Materials & Manufactu-ring Engineering,2011,46(1):40. 15 Grunberger W, Heilmail M, Schultz L. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden[J].Physica B Condensed Matter,2001,s294-295(1):643. 16 Rdzawski Z, Gluchowski W, Stobrawa J. Microstructure and properties of nanofilament Cu-Nb and Cu-Ag composites[J].Physics,2014,74(1):689. 17 Liu J B, Zhang L, Yao D W, et al. Microstructure evolution of Cu/Ag interface in the Cu-6 wt.% Ag filamentary nanocomposite[J].Acta Materialia,2011,59(3):1191. 18 Liu J B, Zhang L, Meng L. Effects of Ag content on microstructure and properties of the filament strengthened alloys[J].Acta Metallurgica Sinica,2006,42(9):937(in Chinese). 刘嘉斌,张雷,孟亮.Ag含量对纤维相强化Cu-Ag合金组织及性能的影响[J].金属学报,2006,42(9):937. 19 Wang C, Ning Y, Zhang K, et al. Strain strengthening of Ag-10Cu in situ filamentary composite prepared by heavy deformation[J].Rare Metal Materials & Engineering,2010,39(2):199. 20 Wang Y M, Mao D L. Deformed fiber strengthened high-strength and high-conductivity alloy[J].Rare Metal Materials and Enginee-ring,2001,30(4):295(in Chinese). 王英民,毛大立.形变纤维增强高强度高电导率的Cu-Ag合金[J].稀有金属材料与工程,2001,30(4):295. 21 Sakai Y, Schneider-Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires[J].Acta Materialia,1997,45(3):1017. 22 Huang J C. Copper silver alloy wire and sheet material with high strength and high conductivity and use thereof[J].Materials China,1997(5):1(in Chinese). 黄金昌.高强度和高导电的铜银合金丝材和片材及其应用[J].中国材料进展,1997(5):1. 23 Kawecki A, Knych T, Sieja-Smaga E, et al. Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires[J].Archives of Metallurgy & Materials,2013,57(4):1261. 24 Kwak H Y, Lee K H, Nathanael A J, et al. Mechanical properties of Cu-Ag microcomposites thermo-mechanically processed by equal channel angular pressing (ECAP)[J].Advanced Science Letters,2012,14(1):849. 25 Cho K J, Hong S I. Modification of microstructure and strength/conductivity properties of Cu-15Ag in-situ composites by equal-channel angular pressing[J].Metals and Materials International,2012,18(2):355. 26 Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J].Materials Science & Engineering A,1999,267(1):99. 27 Ning Y T, Zhang X H, Wu Y J. Influences of some factors on structure and properties of the Cu-Ag alloy in situ composites[J].Precious Metals,2008,29(1):19(in Chinese). 宁远涛,张晓辉,吴跃军.某些因素对Cu-Ag合金原位复合材料的结构和性能的影响[J].贵金属,2008,29(1):19. 28 He J, Liu J B, Meng L. Research and development on microstructure properties and alloying of Cu-Ag filamentary composites[J].Materials Review,2006,20(10):87(in Chinese). 贺佳,刘嘉斌,孟亮.纤维相复合Cu-Ag合金组织、性能及合金化的研究与发展[J].材料导报,2006,20(10):87. 29 Li A, Szlufarska I. Morphology and mechanical properties of nanocrystalline Cu/Ag alloy[J].Journal of Materials Science,2017,52:1. 30 Han K, Vasquez A A, Xin Y, et al. Microstructure and tensile pro-perties of nanostructured Cu-25wt%Ag[J].Acta Materialia,2003,51(3):767. 31 Davy C A, Han K, Kalu P N, et al. Examinations of Cu-Ag compo-site conductors in sheet forms[J].IEEE Transactions on Applied Superconductivity,2008,18(2):560. 32 Lee K H, Hong S I. Interfacial and twin boundary structures of nanostructured Cu-Ag filamentary composites[J].Journal of Mate-rials Research,2003,18(9):2194. 33 Lim S C V, Rollett A D. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite[J].Materials Science & Engineering A,2009,520(1-2):189. 34 Zhang X H, Ning Y T, Li Y N, et al. Microstructure and properties of heavily deformed Cu-10Ag in-situ filamentary composite[J].The Chinese Journal of Nonferrous Metals,2002,12(1):115(in Chinese). 张晓辉,宁远涛,李永年,等.大变形Cu-10Ag原位纤维复合材料的结构和性能[J].中国有色金属学报,2002,12(1):115. 35 Han K, Toplosky V J, Goddard R, et al. Impacts of heat treatment on properties and microstructure of Cu16at%Ag conductors[J].IEEE Transactions on Applied Superconductivity,2012,22(3):6900204. 36 Frommeyer G, Schneider K F. Size effect and interface contribution to diamagnetism of silver-copper composite wires with fibre structure[J].Physica Status Solidi,2010,41(2):653. 37 Ning Y T, Zhang X H, Wu Y J. Deformation characteristics of the Cu-Ag alloy in situ filamentary composite[J].Precious Metals,2006,27(3):1(in Chinese). 宁远涛,张晓辉,吴跃军.Cu-Ag合金原位纤维复合材料的形变特征[J].贵金属,2006,27(3):1. 38 Ning Y, Zhang X, Qin G, et al. Influence of preparation technology on structure and properties of Cu-Ag alloy in situ composites[J].Chinese Journal of Rare Metals,2005,29(4):64(in Chinese). 宁远涛,张晓辉,秦国义,等.制备工艺对Cu-Ag合金原位复合材料结构与性能的影响[J].稀有金属,2005,29(4):64. 39 Ning Y T, Zhang X H, Wu Y J. Strain strengthening of Cu-Ag alloy in situ filamentary composites[J].The Chinese Journal of Nonferrous Metals,2007,17(1):68(in Chinese). 宁远涛,张晓辉,吴跃军.Cu-Ag合金原位纤维复合材料的应变强化效应[J].中国有色金属学报,2007,17(1):68. 40 Ning Y, Zhang X, Wu Y. Influence of microstructure refinement on strain strengthening effect of Cu-Ag alloy in situ filamentary composites[J].Engineering Sciences,2007,5(1):8. 41 Lin J, Liu J B, Meng L. Effects of pre-annealing process on microstructure and properties of the Cu-12%Ag composite wire[J].Rare Metal Materials and Engineering,2006,35(s1):254(in Chinese). 林剑,刘嘉斌,孟亮.预备热处理对纤维相复合强化Cu-12%Ag合金组织与性能的影响[J].稀有金属材料与工程,2006,35(s1):254. 42 Hong S I, Hill M A. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J].Materials Science & Engineering A,1999,264(1-2):151. 43 Liu J B, Zhang L, Meng L. Effect of annealing processes on microstructure, mechanical propertiesand conductivity of Cu-12%Ag alloy composite-reinforced by fibers[J].Rare Metal Materials and Engineering,2005,34(9):1460(in Chinese). 刘嘉斌,孟亮,张雷.等温退火对纤维相复合强化Cu-12%Ag合金组织、力学性能及电导率的影响[J].稀有金属材料与工程,2005,34(9):1460. 44 Wang C J, Ning Y T, Guan We M. Effect of thermomechanical treatment on microstructure and properties of Ag-15Cu in situ filamentary composites[J].Rare Metal Materials and Engineering,2011,40(11):1994(in Chinese). 王传军,宁远涛,管伟明.热机械处理对Ag-15Cu原位纤维复合材料结构及性能的影响[J].稀有金属材料与工程,2011,40(11):1994. 45 Latief F H, Hong S I. Effect of pressing routes on the microstructure and strength in equal channel angular pressing of Cu-3.75Ag[J].Metals & Materials International,2015,21(4):746. 46 Raju K S, Sarma V S, Kauffmann A, et al. High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size, dislocation density and solute distribution[J].Acta Materialia,2013,61(1):228. 47 Gubicza J, Hegedüs Z, Lábár J L, et al. Microstructure evolution during annealing of an SPD-processed supersaturated Cu-3 at.% Ag alloy[J].Materials Science and Engineering,2014,63(1):012091. 48 Ning Y T, Zhang X H, Zhang J. Stability of heavy deformed Cu-Ag alloy in situ filamentary composites[J].The Chinese Journal of Nonferrous Metals,2005,15(4):506(in Chinese). 宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性[J].中国有色金属学报,2005,15(4):506. 49 Zuo X, Han K, Zhao C, et al. Precipitation and dissolution of Ag in ageing hypoeutectic alloys[J].Journal of Alloys & Compounds,2015,622:69. 50 Zhao C, Zuo X, Wang E, et al. Simultaneously increasing strength and electrical conductivity in nanostructured Cu-Ag composite[J].Materials Science & Engineering A,2016,652:296. 51 Zhang X, Yan L, Ning Y. Influence of stabilizing treatment on microstructure and properties of Cu-10Ag-0.04Ce in-situ nano-filamentary composite[J].Chinese Journal of Rare Metals,2005,29(4):54(in Chinese). 张晓辉,闫琳,宁远涛.稳定化处理对Cu-10Ag-0.04Ce原位纳米纤维复合材料的组织及性能的影响[J].稀有金属,2005,29(4):54. 52 Zhang L, Meng L. Effects of alloying elements on microstructure, mechanical and electrical properties of Cu-Ag based alloys[J].The Chinese Journal of Nonferrous Metals,2002,12(6):1218(in Chinese). 张雷,孟亮.合金元素对Cu-Ag合金组织、力学性能和电学性能的影响[J].中国有色金属学报,2002,12(6):1218. 53 Jia S G, Liu P, Tian B H. Effect of trace Cr element on the mechanical properties of Cu-Ag alloy[J].Transactions of Materials and Heat Treatment,2007,28(s1):53(in Chinese). 贾淑果,刘平,田保红.微量Cr元素对Cu-Ag合金力学性能的影响[J].材料热处理学报,2007,28(s1):53. 54 Zhang L, Meng L, Liu J B. Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6 wt.%Ag microcomposite[J].Scripta Materialia,2005,52(7):587. 55 Ning Y T, Zhang X H, Wu Y J. Influences of adding trace RE elements on the structure and properties of Cu-10Ag alloy in situ fiber composites[J].Rare Metal Materials and Engineering,2007,36(8):1425(in Chinese). 宁远涛,张晓辉,吴跃军.微量稀土添加剂对Cu-Ag合金原位纤维复合材料结构与性能的影响[J].稀有金属材料与工程,2007,36(8):1425. 56 Zhang X H, Yan L, Ning Y T. Effect of rare earth on microstructure and properties of Cu-Ag in situ filamentary composite[J].Journal of Functional Materials,2004,35(s1):1084(in Chinese). 张晓辉,闫琳,宁远涛.稀土元素对Cu-Ag原位纤维复合材料的结构与性能影响[J].功能材料,2004,35(s1):1084. 57 Liu J B, Zhang L, Meng L. Effects of rare earth additions on compound structure and as-annealed properties of Cu-12%Ag[J].The Chinese Journal of Nonferrous Metals,2008,18(5):845(in Chinese). 刘嘉斌,张雷,孟亮.稀土元素在Cu-12%Ag合金中形成的化合物及对合金退火性能的影响[J].中国有色金属学报,2008,18(5):845. 58 Zhang X H, Ning Y T, Li Y N. Influence of solidification rate on properties of Cu-Ag in situ filamentary composites[J].Precious Metals,2002,23(1):19(in Chinese). 张晓辉,宁远涛,李永年.凝固速率对Cu-Ag原位纤维复合材料性能的影响[J].贵金属,2002,23(1):19. 59 Li R, Wang E, Zuo X. Co-precipitation, strength and electrical resistivity of Cu-26wt%Ag-0.1wt%Fe alloy[J].Bioorganic & Medicinal Chemistry,2017,25(20):5179. 60 Zuo X, Zhu J, An B, et al. Influence of Fe addition on microstructure and properties of Cu-Ag composite[J].Metals & Materials International,2017,23(5):974. 61 Sakai Y, Hibaru T, Miura K. Development of high strength-high conductivity Cu-6 wt% Ag alloy for high field magnet[J].MRS Advances,2016,1(17):1137. 62 Freudenberger J, Lyubimova J, Gaganov A. Mechanical behaviour of heavily deformed CuAgZr conductor materials[J].Journal of Physics Conference Series,2010,240(1):1047. 63 Li G M, Liu Y, Zou X Z. Effect of horizontal magnetic field on the microstructure of directionally solidified Cu-10%Ag alloy[J].Journal of Functional Materials,2013,44(15):2197(in Chinese). 李贵茂,柳艳,邹兴政.横向静磁场对Cu-10%Ag合金定向凝固组织的影响[J].功能材料,2013,44(15):2197. 64 Zuo X, Guo R, Zhao C, et al. Microstructure and properties of Cu-6wt%Ag composite thermol mechanical processed after directionally solidifying with magnetic field[J].Journal of Alloys & Compounds,2016,676:46. 65 Zuo X W, Guo R, An B L, et al. Microstructure, hardness and electrical resistivity of directionally solidified Cu-6%Ag alloy under a transverse magnetic field[J].Acta Metallurgica Sinica,2016,52(2):143(in Chinese). 左小伟,郭睿,安佰灵,等.横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率[J].金属学报,2016,52(2):143. 66 Zhao C, Zuo X, Wang E, et al. Strength of Cu-28 wt%Ag composite solidified under high magnetic field followed by cold drawing[J].Metals & Materials International,2017,23(2):369. 67 Zuo X, Han K, Zhao C, et al. Microstructure and properties of nanostructured Cu28wt%Ag microcomposite deformed after solidifying under a high magnetic field[J].Materials Science & Engineering A,2014,619:319. 68 Zuo X, Zhao C, Niu R, et al. Microstructural dependence of magnetoresistance in CuAg alloy solidified with high magnetic field[J].Journal of Materials Processing Technology,2015,224:208. 69 Zuo X, Zhao C, Zhang L, et al. Influence of growth rate and magnetic field on microstructure and properties of directionally solidified Ag-Cu eutectic alloy[J].Materials,2016,9(7):569. 70 Kormout K S, Ghosh P, Maier-Kiener V, et al. Deformation mechanisms during severe plastic deformation of a Cu, Ag composite[J].Journal of Alloys & Compounds,2017,695:2285. 71 Tian Y Z, Duan Q Q, Yang H J, et al. Effects of route on microstructural evolution and mechanical properties of Cu-8 Wt Pct Ag alloy processed by equal channel angular pressing[J].Metallurgical & Materials Transactions A,2010,41(9):2290. 72 Tian Y Z, Zhang Z F, Langdon T G. Achieving homogeneity in a two-phase Cu-Ag composite during high-pressure torsion[J].Journal of Materials Science,2013,48(13):4606. 73 Krishna S C, Jha A K, Pant B, et al. Achieving higher strength in Cu-Ag-Zr alloy by warm/hot rolling[J].Rare Metals,2017,36(4):263. 74 Yue S, Ming X, Bi J, et al. Effects of different preparation techniques on mechanical property and electrical conductivity of Cu-8wt% Ag alloy by continuous casting[J].Rare Metal Materials & Engineering,2016,45(8):1997.