Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2684-2692    https://doi.org/10.11896/j.issn.1005-023X.2018.15.021
  金属与金属基复合材料 |
Cu-Ag合金原位纤维复合材料研究现状
何钦生1,2, 邹兴政1,2, 李方1,2, 唐锐1,2, 赵安中1,2, 田世龙3
1 重庆材料研究院有限公司,重庆 400707;
2 国家仪表功能材料工程技术研究中心,重庆 400707;
3 重庆科技学院冶金与材料工程学院,重庆 401331
Research Status of Cu-Ag Alloy In-situ Filamentary Composites
HE Qinsheng1,2, ZOU Xingzheng1,2, LI Fang1,2, TANG Rui1,2, ZHAO Anzhong1,2, TIAN Shilong3
1 Chongqing Materials Research Institute Co., Ltd., Chongqing 400707;
2 National Instrument Functional Materials Engineering Technical Research Center, Chongqing 400707;
3 School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331
下载:  全 文 ( PDF ) ( 3416KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凝聚态物理、材料科学、化学和生物科学的研究需要用到强磁场技术,铁磁线圈是强磁场装置(特别是脉冲强磁场装置)的基础部件,由高导热性、高导电性和高强度的材料组成,Cu-Ag合金原位纤维复合材料应运而生,其相关报道最早可追溯到20世纪六七十年代。Cu-Ag合金原位纤维复合材料是一种纳米晶双相复合材料,较单相材料具有更高的强度和热稳定性,同时还具有较强的导电性能。经过半个世纪的发展,Cu-Ag合金原位纤维复合材料的应用范围扩展到框架材料、接触线及接头等,Ag含量由最初的80%降低至10%~30%(均为质量分数),成本显著降低,且具有相当的电学和力学性能。在此期间,大塑性变形过程中组织形态结构的演变、相界面、相间距及尺寸等对性能的影响已经得到了较充分的研究,并且能通过热处理技术调和变形过程中强度上升而电导率下降的矛盾;研究者们还通过加入Cr、Nb、Zr、Y、Gd、Ce等第三甚至第四组元进行微合金化,在替代Ag的同时产生更多对合金有益的作用,以期进一步提高强度、塑性等综合性能,并取得了一定成效。
但早期的研究还存在一些不足:(1)未从更微观的角度进行更深入的研究;(2)传统的多道次塑性加工技术流程较长;(3)性能预测理论模型的普适性不够。因此,近七年来除更全面深入地研究拉拔、轧制及热处理等工艺外,对Cu-Ag合金原位纤维复合材料的探索主要聚焦于磁场下定向凝固、大塑性变形制备工艺、更低的Ag含量及添加其他合金元素对其性能的影响,以及引入先进分析表征技术。
研究发现磁场下定向凝固可改变晶体的生长方式,通过对枝晶大小和间距、共晶组织体积分数等进行控制来影响材料的性能,使强度进一步提高。等通道转角挤压(Equal channel angular pressing,ECAP)及高压扭转(High-pressure torsion,HPT)等大塑性变形技术在Cu-Ag合金上也得到了应用,使晶粒进一步细化,塑性等综合性能得到提高,为短流程制备Cu-Ag原位纤维复合材料提供了方向。通过对制备技术及微合金化的深入研究,目前Cu-Ag原位纤维复合材料中的Ag含量已经可降低到10%(质量分数)以下,且6%Ag含量的铜基原位复合材料在日本已经被成功应用于强磁场技术中。此外,从更微观的原子/分子角度,研究者揭开了位错、孪晶、织构在制备过程中的产生、演变及对性能的影响规律。
本文从Cu-Ag原位纤维复合材料的力学与电学性能、强度与电导率的匹配关系展开讨论,综述了这一领域的研究现状,并探讨了其发展前景和目前存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何钦生
邹兴政
李方
唐锐
赵安中
田世龙
关键词:  Cu-Ag合金  强度  电导率  纤维增强  原位复合材料    
Abstract: A magnet coil can produce strong magnetic field, under which the research of condensed matter physics, materials science, chemistry and bioscience can be carried out. High magnetic field technology, especially pulsed high magnetic field technology, requires materials with high thermal conductivity, high conductivity and high strength to serve as coils, and Cu-Ag alloy in-situ filamentary composites emerged with a retrospection back to 1960s or 1970s. It is a nanocrystalline dual phase composite material which shows higher strength and thermal stability than single-phase material, and also has strong conductivity. After half a century of development, it has found wide application in frame materials, contact lines, and joints, etc. The Ag content of Cu-Ag alloy in situ filamentary composites has been decreased from 80wt% initially to 10wt%—30wt%, which fully controls the cost, and the compo-sites still maintain considerable electrical and mechanical properties. In the meantime, the effects of structure and morphology evolution during severe plastic deformation, phase interface, phase spacing and phase size on the composites’ performance have been stu-died in detail, and appropriate heat treatment technique has been established which could solve the problem of mutual exclusive between high conductivity and high strength. In order to further improve the comprehensive properties such as strength and plasticity, researchers also made attempts and achievements in adding third or even fourth microalloying elements such as Cr, Nb, Zr, Y, Gd and Ce to simultaneously substitute for Ag and produce more beneficial effects.
However, there are still some shortcomings in the early research: Ⅰ. the lack of more in-depth research from a more microsco-pic view; Ⅱ. relatively complex and time-consuming procedure for the traditional multi-pass plastic processing; Ⅲ. not universally applicable theoretical model for performance prediction. Therefore, in the past seven years, apart from the comprehensive study of the drawing, rolling and heat treatment, the research is mainly concentrated upon performance changes induced by directional solidification under magnetic field, severe plastic deformation, lower Ag content and other alloying elements, as well as the adoption of more advanced analysis and characterization techniques.
It has been found that directional solidification can change the growth mode of crystals, adjust the size and spacing of dendrite and the volume fraction of eutectic structure, and consequently further improve the performance. Equal channel angular pressing (ECAP), high-pressure torsion (HPT) and other techniques of severe plastic deformation also have been applied to Cu-Ag alloy, which resulted in more refined grains and more favorable comprehensive properties. This opens up an approach to the short-process fabrication of Cu-Ag in-situ filamentary composites. Those considerable achievements enable Ag content to be reduced to less than 10wt%, which has been successfully applied to high magnetic field generation in Japan. And moreover, from a more microscopic view (such as molecular- or even atomic-scale), researchers also have revealed the mechanism of formation and evolution of dislocation, twinning and texture in the preparation process.
Focusing on the matching relationship between strength and conductivity of Cu-Ag in-situ filamentary composites, this paper reviews the research status in this field, and discusses the development prospect and the existing problems.
Key words:  Cu-Ag alloys    strength    conductivity    fiber reinforced    in-situ composite
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TG146.1+1  
  TG166.2  
  TG359  
基金资助: 国家重点研发计划(2016YFB0402600)
作者简介:  何钦生:男,1991年生,硕士,工程师,研究方向为金属功能材料及元器件 E-mail:heqinsheng@cmri.cc
引用本文:    
何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
HE Qinsheng, ZOU Xingzheng, LI Fang, TANG Rui, ZHAO Anzhong, TIAN Shilong. Research Status of Cu-Ag Alloy In-situ Filamentary Composites. Materials Reports, 2018, 32(15): 2684-2692.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.021  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2684
1 Dew-Hughes D. High strength conductor for pulsed magnets[J].Materials Science & Engineering A,1993,168(1):35.
2 Mattissen D, Raabe D, Heringhaus F. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ, composite[J].Acta Materialia,1999,47(5):1627.
3 Li Z D, Zhang L, Meng L. Effect of rare earth elements on microstructure of Cu-6%Ag and Cu-24%Ag alloys[J].Journal of the Chinese Society of Rare Earths,2005,23(3):334(in Chinese).
李振铎,张雷,孟亮.稀土元素对Cu-6%Ag及Cu-24%Ag合金微观组织的影响[J].中国稀土学报,2005,23(3):334.
4 Wood J T, Embury J D, Ashby M F. An approach to materials processing and selection for high-field magnet design[J].Acta Materialia,1997,45(3):1099.
5 Callister W D, Rethwisch J R, David G. Materials science and engineering: An introduction 8th Ed[M].Hoboken:Wiley,2010.
6 Raabe D, Mattissen D. Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J].Acta Materialia,1999,47(3):769.
7 Zhao D M, Dong Q M, Liu P. Exploring for optimum composition of copper alloy with high strength and electrical conductivity[J].Journal of Functional Materials,2001,32(6):609(in Chinese).
赵冬梅,董企铭,刘平.探索高强高导铜合金最佳成分的尝试[J].功能材料,2001,32(6):609.
8 Han Y, Zeng W, Qi Y. Optimization of forging process parameters of Ti600 alloy by using processing map[J].Materials Science & Engineering A,2011,529(1):393.
9 Huang C Q. On contact wire line used in catenary of high speed whee-rail electrified railway[J].China Railway Science,2001,22(1):1(in Chinese).
黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学,2001,22(1):1.
10 Dai J Y. Preparation and relative basic research on the copper alloy with high strength and high conductivity[D].Changsha:Central South University,2009(in Chinese).
戴姣燕.高强导电铜合金制备及其相关基础研究[D].长沙:中南大学,2009.
11 Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper[J].Science,2004,304(5669):422.
12 Heringhaus F, Raabe D. Recent advances in the manufacturing of copper-base composites[J].Journal of Materials Processing Techno-logy,1996,59(4):367.
13 Heringhaus F, Schneider-Muntau H J, Gottstein G. Analytical mo-deling of the electrical conductivity of metal matrix composites: Application to Ag-Cu and Cu-Nb[J].Materials Science & Engineering A,2003,347(1):9.
14 Gluchowski W, Stobrawo J P, Rdzawski Z, et al. Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires[J].Journal of Achievements in Materials & Manufactu-ring Engineering,2011,46(1):40.
15 Grunberger W, Heilmail M, Schultz L. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden[J].Physica B Condensed Matter,2001,s294-295(1):643.
16 Rdzawski Z, Gluchowski W, Stobrawa J. Microstructure and properties of nanofilament Cu-Nb and Cu-Ag composites[J].Physics,2014,74(1):689.
17 Liu J B, Zhang L, Yao D W, et al. Microstructure evolution of Cu/Ag interface in the Cu-6 wt.% Ag filamentary nanocomposite[J].Acta Materialia,2011,59(3):1191.
18 Liu J B, Zhang L, Meng L. Effects of Ag content on microstructure and properties of the filament strengthened alloys[J].Acta Metallurgica Sinica,2006,42(9):937(in Chinese).
刘嘉斌,张雷,孟亮.Ag含量对纤维相强化Cu-Ag合金组织及性能的影响[J].金属学报,2006,42(9):937.
19 Wang C, Ning Y, Zhang K, et al. Strain strengthening of Ag-10Cu in situ filamentary composite prepared by heavy deformation[J].Rare Metal Materials & Engineering,2010,39(2):199.
20 Wang Y M, Mao D L. Deformed fiber strengthened high-strength and high-conductivity alloy[J].Rare Metal Materials and Enginee-ring,2001,30(4):295(in Chinese).
王英民,毛大立.形变纤维增强高强度高电导率的Cu-Ag合金[J].稀有金属材料与工程,2001,30(4):295.
21 Sakai Y, Schneider-Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires[J].Acta Materialia,1997,45(3):1017.
22 Huang J C. Copper silver alloy wire and sheet material with high strength and high conductivity and use thereof[J].Materials China,1997(5):1(in Chinese).
黄金昌.高强度和高导电的铜银合金丝材和片材及其应用[J].中国材料进展,1997(5):1.
23 Kawecki A, Knych T, Sieja-Smaga E, et al. Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires[J].Archives of Metallurgy & Materials,2013,57(4):1261.
24 Kwak H Y, Lee K H, Nathanael A J, et al. Mechanical properties of Cu-Ag microcomposites thermo-mechanically processed by equal channel angular pressing (ECAP)[J].Advanced Science Letters,2012,14(1):849.
25 Cho K J, Hong S I. Modification of microstructure and strength/conductivity properties of Cu-15Ag in-situ composites by equal-channel angular pressing[J].Metals and Materials International,2012,18(2):355.
26 Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J].Materials Science & Engineering A,1999,267(1):99.
27 Ning Y T, Zhang X H, Wu Y J. Influences of some factors on structure and properties of the Cu-Ag alloy in situ composites[J].Precious Metals,2008,29(1):19(in Chinese).
宁远涛,张晓辉,吴跃军.某些因素对Cu-Ag合金原位复合材料的结构和性能的影响[J].贵金属,2008,29(1):19.
28 He J, Liu J B, Meng L. Research and development on microstructure properties and alloying of Cu-Ag filamentary composites[J].Materials Review,2006,20(10):87(in Chinese).
贺佳,刘嘉斌,孟亮.纤维相复合Cu-Ag合金组织、性能及合金化的研究与发展[J].材料导报,2006,20(10):87.
29 Li A, Szlufarska I. Morphology and mechanical properties of nanocrystalline Cu/Ag alloy[J].Journal of Materials Science,2017,52:1.
30 Han K, Vasquez A A, Xin Y, et al. Microstructure and tensile pro-perties of nanostructured Cu-25wt%Ag[J].Acta Materialia,2003,51(3):767.
31 Davy C A, Han K, Kalu P N, et al. Examinations of Cu-Ag compo-site conductors in sheet forms[J].IEEE Transactions on Applied Superconductivity,2008,18(2):560.
32 Lee K H, Hong S I. Interfacial and twin boundary structures of nanostructured Cu-Ag filamentary composites[J].Journal of Mate-rials Research,2003,18(9):2194.
33 Lim S C V, Rollett A D. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite[J].Materials Science & Engineering A,2009,520(1-2):189.
34 Zhang X H, Ning Y T, Li Y N, et al. Microstructure and properties of heavily deformed Cu-10Ag in-situ filamentary composite[J].The Chinese Journal of Nonferrous Metals,2002,12(1):115(in Chinese).
张晓辉,宁远涛,李永年,等.大变形Cu-10Ag原位纤维复合材料的结构和性能[J].中国有色金属学报,2002,12(1):115.
35 Han K, Toplosky V J, Goddard R, et al. Impacts of heat treatment on properties and microstructure of Cu16at%Ag conductors[J].IEEE Transactions on Applied Superconductivity,2012,22(3):6900204.
36 Frommeyer G, Schneider K F. Size effect and interface contribution to diamagnetism of silver-copper composite wires with fibre structure[J].Physica Status Solidi,2010,41(2):653.
37 Ning Y T, Zhang X H, Wu Y J. Deformation characteristics of the Cu-Ag alloy in situ filamentary composite[J].Precious Metals,2006,27(3):1(in Chinese).
宁远涛,张晓辉,吴跃军.Cu-Ag合金原位纤维复合材料的形变特征[J].贵金属,2006,27(3):1.
38 Ning Y, Zhang X, Qin G, et al. Influence of preparation technology on structure and properties of Cu-Ag alloy in situ composites[J].Chinese Journal of Rare Metals,2005,29(4):64(in Chinese).
宁远涛,张晓辉,秦国义,等.制备工艺对Cu-Ag合金原位复合材料结构与性能的影响[J].稀有金属,2005,29(4):64.
39 Ning Y T, Zhang X H, Wu Y J. Strain strengthening of Cu-Ag alloy in situ filamentary composites[J].The Chinese Journal of Nonferrous Metals,2007,17(1):68(in Chinese).
宁远涛,张晓辉,吴跃军.Cu-Ag合金原位纤维复合材料的应变强化效应[J].中国有色金属学报,2007,17(1):68.
40 Ning Y, Zhang X, Wu Y. Influence of microstructure refinement on strain strengthening effect of Cu-Ag alloy in situ filamentary composites[J].Engineering Sciences,2007,5(1):8.
41 Lin J, Liu J B, Meng L. Effects of pre-annealing process on microstructure and properties of the Cu-12%Ag composite wire[J].Rare Metal Materials and Engineering,2006,35(s1):254(in Chinese).
林剑,刘嘉斌,孟亮.预备热处理对纤维相复合强化Cu-12%Ag合金组织与性能的影响[J].稀有金属材料与工程,2006,35(s1):254.
42 Hong S I, Hill M A. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J].Materials Science & Engineering A,1999,264(1-2):151.
43 Liu J B, Zhang L, Meng L. Effect of annealing processes on microstructure, mechanical propertiesand conductivity of Cu-12%Ag alloy composite-reinforced by fibers[J].Rare Metal Materials and Engineering,2005,34(9):1460(in Chinese).
刘嘉斌,孟亮,张雷.等温退火对纤维相复合强化Cu-12%Ag合金组织、力学性能及电导率的影响[J].稀有金属材料与工程,2005,34(9):1460.
44 Wang C J, Ning Y T, Guan We M. Effect of thermomechanical treatment on microstructure and properties of Ag-15Cu in situ filamentary composites[J].Rare Metal Materials and Engineering,2011,40(11):1994(in Chinese).
王传军,宁远涛,管伟明.热机械处理对Ag-15Cu原位纤维复合材料结构及性能的影响[J].稀有金属材料与工程,2011,40(11):1994.
45 Latief F H, Hong S I. Effect of pressing routes on the microstructure and strength in equal channel angular pressing of Cu-3.75Ag[J].Metals & Materials International,2015,21(4):746.
46 Raju K S, Sarma V S, Kauffmann A, et al. High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size, dislocation density and solute distribution[J].Acta Materialia,2013,61(1):228.
47 Gubicza J, Hegedüs Z, Lábár J L, et al. Microstructure evolution during annealing of an SPD-processed supersaturated Cu-3 at.% Ag alloy[J].Materials Science and Engineering,2014,63(1):012091.
48 Ning Y T, Zhang X H, Zhang J. Stability of heavy deformed Cu-Ag alloy in situ filamentary composites[J].The Chinese Journal of Nonferrous Metals,2005,15(4):506(in Chinese).
宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性[J].中国有色金属学报,2005,15(4):506.
49 Zuo X, Han K, Zhao C, et al. Precipitation and dissolution of Ag in ageing hypoeutectic alloys[J].Journal of Alloys & Compounds,2015,622:69.
50 Zhao C, Zuo X, Wang E, et al. Simultaneously increasing strength and electrical conductivity in nanostructured Cu-Ag composite[J].Materials Science & Engineering A,2016,652:296.
51 Zhang X, Yan L, Ning Y. Influence of stabilizing treatment on microstructure and properties of Cu-10Ag-0.04Ce in-situ nano-filamentary composite[J].Chinese Journal of Rare Metals,2005,29(4):54(in Chinese).
张晓辉,闫琳,宁远涛.稳定化处理对Cu-10Ag-0.04Ce原位纳米纤维复合材料的组织及性能的影响[J].稀有金属,2005,29(4):54.
52 Zhang L, Meng L. Effects of alloying elements on microstructure, mechanical and electrical properties of Cu-Ag based alloys[J].The Chinese Journal of Nonferrous Metals,2002,12(6):1218(in Chinese).
张雷,孟亮.合金元素对Cu-Ag合金组织、力学性能和电学性能的影响[J].中国有色金属学报,2002,12(6):1218.
53 Jia S G, Liu P, Tian B H. Effect of trace Cr element on the mechanical properties of Cu-Ag alloy[J].Transactions of Materials and Heat Treatment,2007,28(s1):53(in Chinese).
贾淑果,刘平,田保红.微量Cr元素对Cu-Ag合金力学性能的影响[J].材料热处理学报,2007,28(s1):53.
54 Zhang L, Meng L, Liu J B. Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6 wt.%Ag microcomposite[J].Scripta Materialia,2005,52(7):587.
55 Ning Y T, Zhang X H, Wu Y J. Influences of adding trace RE elements on the structure and properties of Cu-10Ag alloy in situ fiber composites[J].Rare Metal Materials and Engineering,2007,36(8):1425(in Chinese).
宁远涛,张晓辉,吴跃军.微量稀土添加剂对Cu-Ag合金原位纤维复合材料结构与性能的影响[J].稀有金属材料与工程,2007,36(8):1425.
56 Zhang X H, Yan L, Ning Y T. Effect of rare earth on microstructure and properties of Cu-Ag in situ filamentary composite[J].Journal of Functional Materials,2004,35(s1):1084(in Chinese).
张晓辉,闫琳,宁远涛.稀土元素对Cu-Ag原位纤维复合材料的结构与性能影响[J].功能材料,2004,35(s1):1084.
57 Liu J B, Zhang L, Meng L. Effects of rare earth additions on compound structure and as-annealed properties of Cu-12%Ag[J].The Chinese Journal of Nonferrous Metals,2008,18(5):845(in Chinese).
刘嘉斌,张雷,孟亮.稀土元素在Cu-12%Ag合金中形成的化合物及对合金退火性能的影响[J].中国有色金属学报,2008,18(5):845.
58 Zhang X H, Ning Y T, Li Y N. Influence of solidification rate on properties of Cu-Ag in situ filamentary composites[J].Precious Metals,2002,23(1):19(in Chinese).
张晓辉,宁远涛,李永年.凝固速率对Cu-Ag原位纤维复合材料性能的影响[J].贵金属,2002,23(1):19.
59 Li R, Wang E, Zuo X. Co-precipitation, strength and electrical resistivity of Cu-26wt%Ag-0.1wt%Fe alloy[J].Bioorganic & Medicinal Chemistry,2017,25(20):5179.
60 Zuo X, Zhu J, An B, et al. Influence of Fe addition on microstructure and properties of Cu-Ag composite[J].Metals & Materials International,2017,23(5):974.
61 Sakai Y, Hibaru T, Miura K. Development of high strength-high conductivity Cu-6 wt% Ag alloy for high field magnet[J].MRS Advances,2016,1(17):1137.
62 Freudenberger J, Lyubimova J, Gaganov A. Mechanical behaviour of heavily deformed CuAgZr conductor materials[J].Journal of Physics Conference Series,2010,240(1):1047.
63 Li G M, Liu Y, Zou X Z. Effect of horizontal magnetic field on the microstructure of directionally solidified Cu-10%Ag alloy[J].Journal of Functional Materials,2013,44(15):2197(in Chinese).
李贵茂,柳艳,邹兴政.横向静磁场对Cu-10%Ag合金定向凝固组织的影响[J].功能材料,2013,44(15):2197.
64 Zuo X, Guo R, Zhao C, et al. Microstructure and properties of Cu-6wt%Ag composite thermol mechanical processed after directionally solidifying with magnetic field[J].Journal of Alloys & Compounds,2016,676:46.
65 Zuo X W, Guo R, An B L, et al. Microstructure, hardness and electrical resistivity of directionally solidified Cu-6%Ag alloy under a transverse magnetic field[J].Acta Metallurgica Sinica,2016,52(2):143(in Chinese).
左小伟,郭睿,安佰灵,等.横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率[J].金属学报,2016,52(2):143.
66 Zhao C, Zuo X, Wang E, et al. Strength of Cu-28 wt%Ag composite solidified under high magnetic field followed by cold drawing[J].Metals & Materials International,2017,23(2):369.
67 Zuo X, Han K, Zhao C, et al. Microstructure and properties of nanostructured Cu28wt%Ag microcomposite deformed after solidifying under a high magnetic field[J].Materials Science & Engineering A,2014,619:319.
68 Zuo X, Zhao C, Niu R, et al. Microstructural dependence of magnetoresistance in CuAg alloy solidified with high magnetic field[J].Journal of Materials Processing Technology,2015,224:208.
69 Zuo X, Zhao C, Zhang L, et al. Influence of growth rate and magnetic field on microstructure and properties of directionally solidified Ag-Cu eutectic alloy[J].Materials,2016,9(7):569.
70 Kormout K S, Ghosh P, Maier-Kiener V, et al. Deformation mechanisms during severe plastic deformation of a Cu, Ag composite[J].Journal of Alloys & Compounds,2017,695:2285.
71 Tian Y Z, Duan Q Q, Yang H J, et al. Effects of route on microstructural evolution and mechanical properties of Cu-8 Wt Pct Ag alloy processed by equal channel angular pressing[J].Metallurgical & Materials Transactions A,2010,41(9):2290.
72 Tian Y Z, Zhang Z F, Langdon T G. Achieving homogeneity in a two-phase Cu-Ag composite during high-pressure torsion[J].Journal of Materials Science,2013,48(13):4606.
73 Krishna S C, Jha A K, Pant B, et al. Achieving higher strength in Cu-Ag-Zr alloy by warm/hot rolling[J].Rare Metals,2017,36(4):263.
74 Yue S, Ming X, Bi J, et al. Effects of different preparation techniques on mechanical property and electrical conductivity of Cu-8wt% Ag alloy by continuous casting[J].Rare Metal Materials & Engineering,2016,45(8):1997.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[4] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[5] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[6] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[7] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[8] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[9] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[10] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[11] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[12] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[13] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[14] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[15] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed