Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4150-4159    https://doi.org/10.11896/j.issn.1005-023X.2018.23.017
  无机非金属及其复合材料 |
3D打印技术应用于大尺度建筑的研究进展
朱彬荣, 潘金龙, 周震鑫, 张洋
东南大学土木工程学院,混凝土及预应力混凝土教育部重点试验室,南京 211189
Advances in Large-scale Three Dimensional Printing Technology Applied in Construction Industry
ZHU Binrong, PAN Jinlong, ZHOU Zhenxin, ZHANG Yang
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于3D打印技术的自动化和智能化优势,将其应用于建筑业,成为当前工程领域研究的热点之一。但是,这种技术在设计方法、打印材料、打印设备以及施工工艺等方面还存在诸多问题,这在一定程度上限制了其大规模的推广应用。与其他应用领域相比,3D打印技术在建筑行业中的应用目前还处于初级阶段。相较于传统的建筑施工,3D打印技术具有如下潜在优势:(1)机械化程度高,施工快,成本低;(2)无模板施工,资源消耗少;(3)劳动强度低,节省人力;(4)施工过程安全、清洁、精确;(5)设计自由,实现轻质高强及多功能;(6)高度定制化,实现标准化与个性化的统一。
然而,由于3D打印技术与传统施工技术的不同,导致传统的普通混凝土无法直接应用于3D打印。而以层层堆叠方式打印的材料则普遍存在结构强度较低、层间形成施工冷缝等问题。因此,近年来研究者们在材料配合比、结构优化设计、评价标准以及施工工艺等方面不断探索,并取得了丰硕的成果。最近,已有不少3D打印技术成功应用于个性化住宅、桥梁建造等的案例报道。
在建筑业大尺度3D打印技术中已取得成功应用的包括轮廓成型工艺、混凝土打印工艺、D型打印工艺和数字建造工艺,其中轮廓成型工艺现已成为主流的建筑3D打印技术。建筑业3D打印建造技术的主要特征可概括为:基于挤出工艺分层打印混凝土、粉末台面配合使用粘结技术以及增强网格。为了满足3D打印的要求,在打印过程中,打印材料需要保持一定的可挤出性、可建造性、粘结性、可工作时间以及高强度。同时,混凝土结构需要一定的增强措施以确保结构的安全可靠性。此外,随着不同技术之间的相互融合,涉及到具体的项目应用时,可以采用某几个技术的联合。
本文系统总结了大尺度3D打印建造技术的发展过程和研究进展。以纤维增强水泥基材料为打印材料,综述了3D打印技术中原材料选择、材料特性、结构增强措施等关键问题。最后,对建筑3D打印技术的发展方向做了展望,以期为3D打印技术在建筑业中的应用推广提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱彬荣
潘金龙
周震鑫
张洋
关键词:  建筑业  3D打印  纤维增强水泥基材料  材料特性  增强措施    
Abstract: Applying 3D printing technology in the construction industry is one of the hot issues in current engineering field due to its automation and intelligentization, However, there are still many unsolved problems in designing method, printing material, printing equipment and construction technology, which hinder its further promotion and application. Implementation of 3D printing technology in the construction industry is still in the prototype stage at present. Compared with traditional building construction, 3D printing technology has following potential advantages, Ⅰ.high degree of mechanization, fast construction speed and low cost, Ⅱ. template free construction and less resource consumption, Ⅲ.low labor intensity and labor saving, Ⅳ.the construction process is safe, clean and accurate, Ⅴ.free design, light weight, high strength and multifunction, Ⅵ.highly customized, possible for realizing both standardization and personalization.
However, 3D printing construction technology cannot be directly used to traditional common concrete on account of the different construction techniques. Generally, the materials which were treated via layer by layer manner invariably accompany with the defects of low structure and formation of weak joints between material layers. Therefore, impressive efforts have been devoted by researchers in the investigation of material mix proportion, optimum structural design, evaluation criterion and construction technology. Lately, some cases have been reported that the 3D printing technology has been successfully adopted to personalized housing and bridge construction.
Successful applications of large-scale 3D printing technology in construction filed,include contour forming crafting, concrete printing crafting, D-type printing crafting and digital fabrication crafting, among which the contour forming crafting has been a mainstream technology. The main features of 3D printing construction technology are summarized as follows: layering concrete based on extrusion, power table-board bonding with binder techniques and reinforcement gridding. In order to meet the requirements of 3D printing technology, the printing materials are required to maintain certain extrudability, buildability, cohesiveness, workable duration and high strength during the printing process. Meanwhile, some enhanced measurements should been taken to insure the safety and reliability of the concrete structures. In addition, with the integration of different technologies, the combination of several technologies may be involved in the application of a specific project.
This paper systematically summarizes the development and research progress of large-scale 3D printing construction technology. Moreover, it also reviews the key problems of 3D printing technology such as. raw material selection, the feature of structural reinforcement measures by virtue of the fiber-reinforced cement-based materials. Furthermore, the development direction of applying 3D printing technology in construction industry is also proposed, which provide a reference for its further application and promotion.
Key words:  construction industry    three dimensional (3D) printing    fiber reinforced cement-based materials    material characteristics    reinforcement measures
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU528  
基金资助: “十三五”国家重点研发计划项目(2017YFC0703705); 国家自然科学基金(51778131); 江苏省杰出青年基金(BK20160027)
作者简介:  朱彬荣:男,1990年生,博士研究生,研究方向为高延性水泥基材料的3D打印 E-mail:zhubr9005@163.com;潘金龙:通信作者,1976年生,男,博士,教授,博士研究生导师,主要从事建筑工业化、装配式结构体系及其抗震性能、3D打印建筑的研究 E-mail:cejlpan@seu.edu.cn
引用本文:    
朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
ZHU Binrong, PAN Jinlong, ZHOU Zhenxin, ZHANG Yang. Advances in Large-scale Three Dimensional Printing Technology Applied in Construction Industry. Materials Reports, 2018, 32(23): 4150-4159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.017  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4150
1 Warnke P H, Seitz H, Warnke F, et al.Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations[J].Journal of Biomedical Materials Research Part B Applied Biomaterials,2010,93(1):212.
2 Gorsse S, Hutchinson C, Gouné M, et al.Additive manufacturing of metals: A brief review of the characteristic microstructures and pro-perties of steels, Ti-6Al-4V and high-entropy alloys[J].Science & Technology of Advanced Materials,2017,18(1):584.
3 Milewski J O.Additive manufacturing of metals[M]. Springer,2017.
4 Megahed M, Mindt H W, N’dri N, et al.Metal additive-manufacturing process and residual stress modeling[J].Integrating Materials & Manufacturing Innovation,2016,5(1):1.
5 Shakor P, Sanjayan J, Nazari A, et al.Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing[J].Construction & Building Materials,2017,138:398.
6 Ngo T D, Kashani A, Imbalzano G, et al.Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J].Composites Part B Engineering,2018,143:172.
7 Khoshnevis B.Automated construction by contour crafting—Related robotics and information technologies[J].Automation in Construction,2004,13(1):5.
8 Khoshnevis B, Hwang D, Yao K T, et al.Mega-scale fabrication by contour crafting[J].International Journal of Industrial & Systems Engineering,2006,1(3):301.
9 Xu J, Ding L, Love P E D. Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing[J].Automation in Construction,2017,76:85.
10 Zhang J, Khoshnevis B.Optimal machine operation planning for construction by contour crafting[J].Automation in Construction,2013,29(1):50.
11 Lim S, Buswell R A, Le T T, et al.Developments in construction-scale additive manufacturing processes[J].Automation in Construction,2012,21(1):262.
12 Panda B N, Tay D, Paul S C, et al.Current challenges and future potential of 3D concrete printing[J].Materialwissenschaft Und Werkstofftechnik,2018,49:666.
13 Wolfs R J M. 3D printing of concrete structures[D].Eindhoven: Eindhoven University of Technology,2015.
14 Panda B, Paul S C, Mohamed N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J].Measurement,2017,113:108.
15 Gosselin C, Duballet R, Roux P, et al.Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders[J].Materials & Design,2016,100:102.
16 Asprone D, Auricchio F, Menna C, et al.3D printing of reinforced concrete elements: Technology and design approach[J].Construction & Building Materials,2018,165:218.
17 Bos F, Wolfs R, Ahmed Z, et al.Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing[J].Virtual and Physical Prototyping,2016,11:209.
18 Wolfs R J M, Bos F P, Salet T A M, et al. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing[J].Cement & Concrete Research,2018,106:103.
19 Costanzi C B, Ahmed Z Y, Schipper H R, et al.3D Printing Concrete on temporary surfaces: The design and fabrication of a concrete shell structure[J].Automation in Construction,2018,94:395.
20 Asprone D, Menna C, Bos F P, et al.Rethinking reinforcement for digital fabrication with concrete[J].Cement & Concrete Research, 2018, 112: 111.
21 Salet T A M, Ahmed Z Y, Bos F P, et al. Design of a 3D printed concrete bridge by testing[J].Virtual and Physical Prototyping,2018,13(3):222.
22 Le T T, Austin S A, Lim S, et al.Mix design and fresh properties for high-performance printing concrete[J].Materials & Structures,2012,45(8):1221.
23 Ma G W, Wang L, Ju Y.State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction[J].Science China Technological Sciences,2018,61:475.
24 Lim S, Buswell R A, Le T T, et al.Development of a viable concreteprinting process[C]∥28th International Symposium on Automationand Robotics in Construction. Seoul,2011:665.
25 Paul S C, Yi W D T, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction[J].Archives of Civil & Mechanical Engineering,2018,18(1):311.
26 Lim S, Le T, Webster J, et al.Fabricating construction components using layer manufacturing technology[C]∥Global Innovation in Construction Conference. Leicestershire,2009:512.
27 Lim S, Buswell R A, Valentine P J, et al.Modelling curved-layered printing paths for fabricating large-scale construction components[J].Additive Manufacturing,2016,12:216.
28 Perkins I, Skitmore M.Three-dimensional printing in the construction industry: A review[J].International Journal of Construction Management,2015,15(1):1.
29 Cesaretti G, Dini E, Kestelier X D, et al.Building components for an outpost on the Lunar soil by means of a novel 3D printing techno-logy[J].Acta Astronautica,2014,93(1):430.
30 Benvenuti S.Living on the Moon: Topological Optimization of a 3D-Printed Lunar Shelter[J].Nexus Network Journal,2013,15(2):285.
31 Ghaffar S H, Corker J, Fan M.Additive manufacturing technology and its implementation in construction as an eco-innovative solution[J].Automation in Construction,2018,93:1.
32 Colla V, Dini E.Large Scale 3D Printing: From deep sea to the moon[M].The Abdus Salam Center for Theoretical Physics,2013.
33 Behind the 3d printed bridge: exclusive interview with catalonian designers at iaac.[DB/OL].(2017-11-21)[2017-12-13].https:∥3dprintingindustry.com/news/behind-3d-printed-bridge-exclusive-interview-catalonian-designers-iaac-101391/
34 Gershenfeld N.How to make almost anything: The digital fabrication revolution[J].Foreign Affairs,2012,91(6):43.
35 Dunn N.Digital fabrication in architecture[M].Laurence King,2012.
36 Gramazio F, Kohler M, Langenberg S.Fabricate: Negotiating design & making[M].Gtaverlag,2014.
37 Lauer W V.Mesh-Mould: Robotically fabricated spatial meshes as reinforced concrete formwork[J].Architectural Design,2014,84(3):44.
38 Soto B G D, Agustí-Juan I, Hunhevicz J, et al. Productivity of di-gital fabrication in construction: Cost and time analysis of a robotically built wall[J].Automation in Construction,2018,92:297.
39 Buchli J, Giftthaler M, Kumar N, et al.Digital in situ fabrication-Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond[J].Cement and Concrete Research,2018,112:66.
40 Agustí-Juan I, Müller F, Wangler T, et al.Potential benefits of di-gital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall[J].Journal of Cleaner Production,2017,154:330.
41 Branch technology and algix 3d partner to deliverthe next revolution in 3D printing. [DB/OL]. (2017-09-01) [2017-12-14]. https:∥www.branch.technology/blogs/2017/9/1/branch-3d-prints-in-bio-material
42 Agustí-Juan I, Habert G.Environmental design guidelines for digital fabrication[J].Journal of Cleaner Production,2017,142:2780.
43 Rippmann M, Block P.Rethinking structural masonry: Unreinforced, stone-cut shells[J].Construction Materials,2013,66(6):378.
44 Willmann J, Knauss M, Apolinarska A A, et al.Robotic timber construction—Expanding additive fabrication to new dimensions[J].Automation in Construction,2016,61:16.
45 Keating S J, Leland J C, Cai L, et al.Toward site-specific and self-sufficient robotic fabrication on architectural scales[J].Science Robotics,2017,2(5):1.
46 Wangler T, Lloret E, Reiter L, et al.Digital concrete: Opportunities and challenges[J].RILEM Technical Letters,2016,1:67.
47 Khalil N, Aouad G, Cheikh K E, et al.Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars[J].Construction & Building Materials,2017,157:382.
48 Perrot A, Rangeard D, Pierre A.Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J].Materials & Structures,2016,49(4):1213.
49 Sanchez F, Sobolev K.Nanotechnology in concrete—A review[J].Construction & Building Materials,2010,24(11):2060.
50 Güneyisi E, Geso<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1005-023X-32-23-4150"><mml:mover accent="true"><mml:mi>g</mml:mi><mml:mtext fontstyle="italic">˙</mml:mtext></mml:mover></mml:math></inline-formula>lu M, Algin Z, et al. Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method[J].Composites Part B Engineering,2014,60(2):707.
51 Yang Y, Yang E H, Li V C.Autogenous healing of engineered cementitious composites at early age[J].Cement & Concrete Research,2011,41(2):176.
52 Qiu J, Tan H S, Yang E H.Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites[J].Cement & Concrete Composites,2016,73:203.
53 Kim J K, Kim J S, Ha G J, et al.Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag[J].Cement & Concrete Research,2007,37(7):1096.
54 Wongkornchaowalit N, Lertchirakarn V.Setting time and flowability of accelerated Portland cement mixed with polycarboxylate superplasticizer[J].Journal of Endodontics,2011,37(3):387.
55 He Y, Zhang X, Hooton R D.Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste[J].Construction & Building Materials,2017,132:112.
56 Singh M, Siddique R.Properties of concrete containing high volumes of coal bottom ash asfine aggregate[J].Journal of Cleaner Production,2015,91:269.
57 Singh M, Siddique R.Strength properties and micro-structural pro-perties of concrete containing coal bottom ash as partial replacement of fine aggregate[J].Construction & Building Materials,2014,50(4):246.
58 Sahmaran M, Li V C.Durability properties of micro-cracked ECC containing high volumes fly ash[J].Cement & Concrete Research,2009,39(11):1033.
59 Yu J, Lu C, Leung C K Y, et al. Mechanical properties of green structural concrete with ultrahigh-volume fly ash[J].Construction & Building Materials,2017,147:510.
60 Kazemian A, Yuan X, Cochran E, et al.Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture[J].Construction & Building Materials,2017,145:639.
61 Paul S C, Yi W D T, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction[J].Archives of Civil & Mechanical Engineering,2018,18(1):311.
62 Ma G W, Li Z J, Wang L.Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J].Construction & Building Materials,2018:613.
63 Weng Y, Li M, Tan M J, et al.Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model[J].Construction & Building Materials,2018,163:600.
64 Wallevik J E.Effect of the hydrodynamic pressure on shaft torque for a 4-blades vane rheometer[J].International Journal of Heat & Fluid Flow,2014,50:95.
65 Wallevik O H, Feys D, Wallevik J E, et al.Avoiding inaccurate interpretations of rheological measurements for cement-based mate-rials[J].Cement & Concrete Research,2015,78:100.
66 Zhu H, Martys N S, Ferraris C, et al.A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method[J].Journal of Non-Newtonian Fluid Mechanics,2010,165(7-8):362.
67 Mechtcherine V, Shyshko S.Simulating the behaviour of fresh concrete with the Distinct Element Method—Deriving model parameters related to the yield stress[J].Cement & Concrete Composites,2015,55:81.
68 Remond S, Pizette P.A DEM hard-core soft-shell model for the si-mulation of concrete flow[J].Cement & Concrete Research,2014,58(15):169.
69 Mechtcherine V, Gram A, Krenzer K, et al.Simulation of fresh concrete flow using Discrete Element Method (DEM): Theory and applications[J].Materials and Structures,2014,47(4):615.
70 Zareiyan B, Khoshnevis B.Interlayer adhesion and strength of structures in contour crafting—Effects of aggregate size, extrusion rate, and layer thickness[J].Automation in Construction,2017,81:112.
71 Panda B, Paul S C, Tan M J.Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J].Materials Letters,2017,209:146.
72 Kazemian A, Yuan X, Cochran E, et al.Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture[J].Construction & Building Materials,2017,145:639.
73 Le T T, Austin S A, Lim S, et al.Hardened properties of high-performance printing concrete[J].Cement & Concrete Research,2012,42(3):558.
74 Zhao J, Chen C, Liang Y, et al.Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: A comparative study[J].Acta Mechanica Sinica,2010,26(1):21.
[1] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[2] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[3] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[4] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(21): 3743-3753.
[5] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[6] 魏明炜, 陈岁元, 郭快快, 梁京, 刘常升. EIGA法制备激光3D打印用TA15钛合金粉末*[J]. 《材料导报》期刊社, 2017, 31(12): 64-67.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed