Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3743-3753    https://doi.org/10.11896/j.issn.1005-023X.2018.21.010
  金属与金属基复合材料 |
同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展
安晓龙, 吕云卓, 覃作祥, 陆兴
大连交通大学材料科学与工程学院,大连 116028
Progress in Numerical Simulation of Laser 3D Printing of Metal by Coaxial Powder Feeding: Flow in Welding Pool, Composition Distribution and Tissue Growth
AN Xiaolong, LYU Yunzhuo, QIN Zuoxiang, LU Xing
School of Material Science and Engineering, Dalian Jiaotong University, Dalian 116028
下载:  全 文 ( PDF ) ( 5284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在“中国制造2025”、美国《国家先进制造战略计划》、欧洲航天局《惊奇计划》、日本《增材制造科研计划》、新加坡《工业增材制造项目》以及欧盟《3D打印标准化路线图》等全球新型制造技术迅猛发展的机遇下,金属激光3D打印融合了计算机辅助设计、材料加工与成形技术,以数字化模型文件为基础,通过软件与数控系统将特制材料逐层堆积固化,制造出实体产品,该技术日益成为国内外专家学者的研究热点。它与传统的对原材料进行切削、组装的加工模式不同,是通过材料累加的原理,从无到有地制造产品的新型技术工艺。也正是由于增材制造的这种技术特点,使得它受到全球的广泛关注,将可能会给传统的制造业带来一系列深刻的变革。其中同轴送粉式金属激光3D打印技术因具有成形尺寸大、可利用材料范围广、成形件的材料性能优异等特点,在航空航天、交通、医疗与能源等领域有着广阔的应用前景,成为金属增材制造主流的工艺技术。
3D打印熔池中存在着传热、对流、传质、气-液界面冶金反应以及固-液界面扩散等复杂的动态物理冶金过程。熔池的流体力学行为直接影响材料组织的均匀性以及致密性,因此,如何通过流体力学方法对熔池的流体动态过程进行模拟,建立熔池温度和流场的三维非稳态模型,并定量分析浮力、表面张力、粉末冲击力以及综合作用对3D打印过程温度场、速度场和熔池形态的影响是需要解决的关键问题。
数值仿真模拟是研究同轴送粉式金属激光3D打印熔池动力学过程的重要手段之一。目前,在关于同轴送粉式金属激光3D打印数值模拟和激光焊的数值模拟研究中,已包含较为全面的多尺度数值模型,例如光-粉耦合作用数值模型、熔池气-液界面和固-液混合区界面追踪模型、熔池瞬时变化的热场和流场分析模型、熔池中合金元素的分布过程介观模型以及基于相场法的熔池形貌和显微组织凝固元胞自动机模型等。
本文主要阐述国内外研究学者对同轴送粉式金属激光3D打印仿真模拟的研究进展,主要集中在3D打印过程中熔池瞬时变化的热场和流场分析、合金元素的分布过程以及熔池形貌和显微组织凝固等方面。由于数值模拟方法具有一定的通用性,为了更全面地介绍与同轴送粉式金属激光3D打印技术相关的数值模拟方法,本文也涉及了少量送粉式激光熔覆以及激光电弧填粉焊接等过程的数值模拟工作。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安晓龙
吕云卓
覃作祥
陆兴
关键词:  同轴送粉3D打印  熔池流动  成分分布  数值模拟    
Abstract: In the exceptional historical opportunity of “Made in China 2025”, the “National Advanced Manufacturing Strategic Plan” of the United States, the “Amazing Plan” of European Space Agency, the Japanese “Additive Manufacturing Research Program”, the “Industrial Additive Manufacturing Project” in Singapore and the EU “3D Printing Standardization Roadmap”, the metal laser 3D printing has become the focus of research among scholars at home and abroad. Metal laser 3D printing is a technique that integrate computer-aided design, material processing and forming technology, and manufacture products by stacking and solidifying special materials through software and numerical control system based on the digital model files. Different from traditional machining mode of cutting and assembling raw materials, it is a innovative technique that manufacture products from scratch based on the materials accumulation principle. Just because of the technological characteristics of addictive manufacturing, it has attracted worldwide attention, and will evoke a series of profound changes to the traditional manufacturing industry.The coaxial powder feeding type me-tal laser 3D printing technique possesses broad application prospects in the field of aviation, aerospace, transportation, medical treatment and energy, because of its large forming size, wide range of available materials and excellent material properties of shaped parts, which has become the main stream technology of additive manufacturing.
There are complex dynamic physical metallurgical processesincluding heat transfer, convection, mass transfer, gas-liquid interface metallurgy and solid-liquid interface diffusion in the 3D printing pool. The fluid dynamic behavior of the weld pool directly affects the homogeneity and compactness of the material structure. Therefore, there still exist several key problems to be figured out in me-tal laser 3D printing, which are the simulation of the fluid dynamic process of the weld pool by fluid mechanics, establishment of three-dimensional unsteady model of the temperature and flow field of the weld pool, the influence of buoyancy, surface tension, powder impact force on the temperature field, velocity field and molten pool shape of 3D printing.
Numerical simulation is one of the important methods to study the dynamic processin the welding pool of co-axial powder feeding metal laser 3D printing. At present, research on the numerical simulations of coaxial powder laser metal 3D printing and laser wel-ding have included more comprehensive multiscale numerical models, such as light-powder coupling numerical model of molten pool, the interface tracing model of gas-liquid interface and solid-liquid mixed zone in molten pool, the temperature field and fluid flow analysis model of instantaneous variation of molten pool, the mesoscopic model for the distribution of alloying elements in the molten pool and the model for the morphology of the molten pool and the cellular automata for microstructure solidification based on the phase field method.
This article mainly elaborates the domestic and international researches on simulation of the coaxial powder metal laser 3D prin-ting, which mainly focus on the analysis of thermal field and flow field with instantaneous variations in the molten pool, the distribution process of the alloying elements, the morphology of the molten pool and solidification of the microstructure during the 3D prin-ting process. Owing to the universal applicability of numerical simulation method and in order to introduce the numerical simulation methods related to coaxial powder feeding metal laser 3D printing technique in a more comprehensive manner, this article also involves a small amount of numerical simulation about coaxial powder laser cladding and laser arc welding.
Key words:  coaxial powder feeding 3D printing    molten pool flow    composition distribution    numerical simulation
                    发布日期:  2018-11-21
ZTFLH:  TG495  
基金资助: 国家自然科学基金(51671043; 51401041; 51671042)
作者简介:  安晓龙:男,1993年生,硕士研究生,主要研究方向为镍基材料LMD工艺制造以及数值模拟;吕云卓:男,1985年生,博士,副教授,主要研究方向为激光3D打印非晶态合金 E-mail:luyz@djtu.edu.cn;陆兴:通信作者,男,1963年生,博士,教授,主要研究方向为激光3D打印难熔合金 E-mail:lu@djtu.edu.cn
引用本文:    
安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(21): 3743-3753.
AN Xiaolong, LYU Yunzhuo, QIN Zuoxiang, LU Xing. Progress in Numerical Simulation of Laser 3D Printing of Metal by Coaxial Powder Feeding: Flow in Welding Pool, Composition Distribution and Tissue Growth. Materials Reports, 2018, 32(21): 3743-3753.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.010  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3743
1 Lu Bingheng, Li Dichen.Technical development of additive manufacturing (3D printing)[J].Machinery Manufacturing and Automation,2013,42(4):1(in Chinese).
卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1.
2 Keicher D M, Smugeresky J E, Romero J A, et al.Using the laser engineered net shaping (LENS) process to produce complex components from a CAD solid model[C]∥Proceedings of the SPIE—The International Society for Optical Engineering. Lasers as Tools for Manufacturing. Orlando,1997.
3 Huang Weidong, Li Yanmin, Feng Liping, et al.Laser solid for-ming of metal powder materials[J].Journal of Material Engineering,2002(3):40(in Chinese).
黄卫东,李延民,冯莉萍,等.金属材料激光立体成形技术[J].材料工程,2002(3):40.
4 Jia Wenpeng, Lin Xin, Chen Jing, et al.Temperature/stress field numerical simulation of hollow blace produced by laser rapid forming[J].Chinese Lasers,2007,34(9):1308(in Chinese).
贾文鹏,林鑫,陈静,等.空心叶片激光快速成形过程的温度场/应力场数值模拟[J].中国激光,2007,34(9):1308.
5 黄卫东,林鑫,陈静,等.激光立体成形[M].西安:西北工业大学出版社,2007:225.
6 David S A, DebRoy T. Current issues and problems in welding science[J].Science,1992,257(12):497.
7 Qi H, Mazumder J, Green L, et al.Laser beam analysis in direct metal deposition process[J].Journal of Laser Applications,2005,17(3):136.
8 Tang Q, Pang S, Chen B, et al.A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6-Al-4-V alloy[J].International Journal of Heat and Mass Transfer,2014,78(6):203.
9 Hu Y, He X, Yu G, et al.Heat and mass transfer in laser dissimilar welding of stainless steel and nickel[J].Applied Surface Science,2012,258(15):5914.
10 Kumar A, Roy S.Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J].Computational Materials Science,2009,46(2):495.
11 Gan Z, et al.Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J].International Journal of Heat and Mass Transfer,2017,104(1):28.
12 Gan Zhengtao, Yu Gang, He Xiuli, et al.Surface-active element transport and its effect on liquid metal flow in laserassisted additive manufacturing[J].International Communications in Heat and Mass Transfer,2017,86(11):206.
13 Acharyar, Bansalr, Gambone J J, et al. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part Ⅰ)[J].Metallurgical and Materials Transactions B,2014,45(6):2247.
14 Manvatkar V, de A Debroyt. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process[J].Materials Science and Technology,2015,31(8):924.
15 Chatterjee D, Chakrabortys. A hybrid lattice Boltzmann model for solidliquid phase transition in presence of fluid flow[J].Physics Letters A,2006,351(4-5):359.
16 Geiger M, Leitz K H, Koch H, et al.A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets[J].Production Engineering,2009,3(2):127.
17 Zhao Lin, Tsukamoto Susumu, Arakane Goro,et al.Distribution of wire feeding elements in laser-arc hybrid welds[J].Chinese Journal of Lasers,2015(4):210(in Chinese).
赵琳,塚本进,荒金吾郎,等.激光-电弧复合焊焊缝合金元素分布的研究[J].中国激光,2015(4):210.
18 Cho W, Na S,Cho M, et al.Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J].Computational Materials Science,2010,49(4):792.
19 Wei H L, Mazumder J, Debroyt. Evolution of solidification texture during additive manufacturing[J].Scientific Reports,2015,5:16446.
20 Zhou J T H L. Investigation of mixing and diffusion processes in hybrid spot laser-mig keyhole welding[J].Journal of Physics D: Applied Physics,2009,42(9):95502.
21 Fallah V, Amoorezaei M, Provatas N, et al.Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys[J].Acta Materialia,2012,60(4):1633.
22 Yin H, Felicelli S D.Dendrite growth simulation during solidification in the LENS process[J].Acta Materialia,2010,58(4):1455.
23 Wei Lei, Lin Xin,Wang Meng, et al.Cellular automaton simulation of the molten pool of laser solid forming process[J].Acta Physica Sinica,2015,64(1):348(in Chinese).
魏雷,林鑫,王猛,等.激光立体成形中熔池凝固微观组织的元胞自动机模拟[J].物理学报,2015,64(1):348.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[11] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[12] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[13] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed