Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 871-880    https://doi.org/10.11896/cldb.201905020
  金属与金属基复合材料 |
探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究
陈祥楷, 李向明
昆明理工大学材料科学与工程学院,昆明 650093
Exploring the Growth of Binary Eutectic: Real Time In-situ Observation,Numerical Simulation and Analytic Solutions Calculation
CHEN Xiangkai, LI Xiangming
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 5732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由定向凝固法在一定凝固速度范围内制备得到的共晶通常为层状或棒状结构共晶。层状和棒状二元共晶合金具有优良的物理、化学和力学性能, 被广泛应用于航空航天和汽车等领域,应用前景广阔。值得指出的是共晶合金已被应用于飞机发动机的涡轮叶片。近几十年来,国内外研究人员已经从共晶生长的实时原位观察实验、数值模拟和解析解计算三个方面展开了大量研究。
共晶间距对共晶合金的性能具有显著影响,进而影响共晶合金在实际中的应用。在共晶生长过程中,工艺参数如凝固速度、共晶成分、固相体积分数、温度梯度、合金的初始浓度等是共晶间距的重要影响因素。此外,共晶形貌受共晶生长的稳定性和相界各向异性的影响。因此,研究人员在进行共晶生长的实时原位观察实验、数值模拟和解析解计算时主要关注工艺参数对共晶间距和共晶形貌的影响规律。大量的实时原位观察实验和数值模拟的研究结果表明,当凝固速度和合金的初始浓度增大时,层状共晶或棒状共晶间距减小。共晶成分发生变化时,共晶结构在层状和棒状之间发生转变。此外,共晶结构的转变条件依赖于α和β固相体积分数,当α和β两固相体积分数相差较大时,共晶倾向于形成棒状结构。当α和β两固相体积分数相接近时,共晶倾向于形成层状结构。同时,研究人员已经建立了共晶生长的数学模型并使用数学方法计算获得了共晶生长的解析解,进而研究了工艺参数对界面形貌和临界共晶间距的影响规律。
本文从定向凝固条件下层状共晶和棒状共晶生长的实时原位观察的实验研究、数值模拟和解析解计算三方面分别阐述了工艺参数对共晶间距和共晶形貌的影响规律;重点阐述了在层状共晶和棒状共晶生长过程中,工艺参数如凝固速度、共晶成分和固相体积分数对共晶间距的影响规律;概述了相界的各向异性及共晶生长的稳定性对共晶形貌的影响规律。此外,对一种特殊的二元棒状共晶生长的实时原位观察和解析解计算进行了介绍,指出了目前该研究领域存在的一些问题,并对未来的研究工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈祥楷
李向明
关键词:  共晶生长  凝固速度  共晶形貌  共晶间距  形貌实时观察  数值模拟  二元棒状共晶    
Abstract: It is generally known that lamellar or rod-shaped eutectic alloys can be obtained by directional solidification in a certain range of solidification rate. The lamellar and rod-shaped binary eutectic alloys exhibit plenty superior physical, chemical and mechanical properties, and have been widely used in aerospace and automobile fields, showing a broad prospect of application. It is worth mentioning that the eutectic alloys have been already utilized as the turbine blades. In recent years, huge efforts have been put into the research of eutectic growth through real time in situ observation, numerical simulation and analytic solutions calculation.
The eutectic spacing will significantly affect the properties of the eutectic alloys and further affect their practical application. The process parameters including pulling velocity, thermal gradient, volume fraction of solid phase, eutectic composition and initial concentration of alloy are the key influence factors of the eutectic spacing. Moreover, the eutectic morphology also can be affected by the stability of eutectic growth and the inter-phase boundary anisotropy. Therefore, researchers mostly focus on the influence of the process parameters on the eutectic morphology when they study the eutectic alloys through real time in situ observation, numerical simulation and analytic solutions calculation. Numerous research results show that the spacing of lamellar and rod-shaped eutectic decrease with the increase of pulling velocity and the alloy initial concentration. The structure transformation between rod-shaped and lamellar of eutectic can be realized by the composition variation of eutectic. Moreover, the eutectic structure transition condition depends on the solid phase volume fraction of α and β phases. When the solid volume fraction of α and β phases is in great difference, the eutectic tends to form the rod-shaped structure. When the solid phase volume fraction of α and β phases is close, the eutectic alloy tends to form the lamellar structure. Meanwhile, the mathematic models of the eutectic growth have been established and the analy-tic solutions have been calculated through mathematic method. Furthermore, the effect of the process parameters on the interface morphology and the critical eutectic spacing has been investigated.
In order to study the influence of the process parameters on the eutectic morphology, a state-of-the-art review on in situ experimentation studies with numerical simulation and analytic solutions calculation of the binary eutectic is presented. This review mainly focus on the effect of solidification velocity, eutectic composition and the volume fraction of solid phase on the eutectic spacing. The effect of the interphase boundary anisotropy and stability of the eutectic growth on the eutectic morphology are also analyzed. In particular, an in situ experimentation studies and analytic solutions calculation of the growth of a special rod-shaped binary eutectic is introduced. Problems in current researches and new perspectives for future research are proposed as well.
Key words:  eutectic growth    solidification velocity    eutectic morphology    eutectic spacing    morphology real-time observation    numerical simulation    rod-shaped binary eutectic
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51561016);云南省科技项目(2016FB089);昆明理工大学高级人才启动基金(KKSY201551034)
作者简介:  陈祥楷,2015年6月毕业于华北水利水电大学,获得工学学士学位。现为昆明理工大学材料科学与工程学院硕士研究生,在李向明副教授的指导下进行研究。目前主要研究领域为凝固理论。李向明,昆明理工大学材料科学与工程学院副教授、硕士研究生导师。主要从事有色金属熔炼与成型技术,热加工过程中的模拟仿真,多孔金属材料制备的研究工作。lixm@kmust.edu.cn
引用本文:    
陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
CHEN Xiangkai, LI Xiangming. Exploring the Growth of Binary Eutectic: Real Time In-situ Observation,Numerical Simulation and Analytic Solutions Calculation. Materials Reports, 2019, 33(5): 871-880.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905020  或          http://www.mater-rep.com/CN/Y2019/V33/I5/871
1 Chilton J, Winegard W. Journal of the Japan Institute of Metals,1961,89(5),162.
2 Yue A. The Metallurgical Society of AIME,1962,224(5),1010.
3 Chadwick G A. Progress in Materials Science,1963,12,99.
4 Seetharaman V, Trivedi R. Metallurgical and Materials Transactions A,1988,19(12),2955.
5 Faivre G, Mergy J. Physical Review A,1992,45(10),7320.
6 Ginibre M, Akamatsu S, Faivre G. Physical Review E,1997,56(1),780.
7 Akamatsu S, Faivre G, Moulinet S. Metallurgical and Materials Transactions A,2001,32(8),2039.
8 Asta M, Beckermann C, Karma A, et al. Acta Materialia,2009,57,941.
9 Boettinger W J,Coriell S R,Greer A L,et al. Acta Materialia,2000,48,43.
10 Jackson K A, Hunt J D. The Metallurgical Society of AIME,1966,236,1129.
11 Arka Lahiri, Abhik Choudhury. Acta Materialia,2017,133,316.
12 Meli Šserefoglu. Materials Science and Engineering,2011,84,011614.
13 Liu S, Lee J H, Trivedi R. Acta Materialia,2011,59,2102.
14 Wu R Z, Yan Y D, Wang G X, et al. International Materials Reviews,2015,60,65.
15 Dong H W, Wang L M, Liu K, et al. Materials & Design,2016,90,157.
16 Karami M, Mahmudi R. Materials Science and Engineering: A,2013,576,156.
17 Yang H P, Fu M W. Materials & Design,2016,112,151.
18 Mahmudi R, Shalbafi M, Karami M, et al. Materials & Design,2015,75,184.
19 Qu Z, Wu L, Wu R, et al. Materials & Design,2014,54,792.
20 Zhu T, Cui C, Zhang T, et al. Materials & Design,2014,57,245.
21 Wang T, Zhu T, Wu R,et al. Materials & Design,2015,85,190.
22 Karami M, Mahmudi R. Materials Science and Engineering: A,2015,636,493.
23 Chen D H, Jin N, Chen W W, et al. Surface and Coatings Technology,2014,254,440.
24 Evans A G, Hutchinson J W, Ashby M F. Progress in Materials Science,1999,43,171.
25 Banhart. Progress in Materials Science,2001,46,559.
26 Hyun K S, Murakami K. Materials Science and Engineering: A,2001,299,241.
27 Nakajima H. Proceedings of the Japanese Academy Series B Physics Biology Science,2010,86,885.
28 Bei H, George E P, Kenik E A. Acta Materialia,2003,51,6241.
29 Milenkovic S, Coelho A A, Caram R. Journal of Crystal Growth,2000,211,485.
30 Wang L, Shen J, Zhang Y. Materials Science and Engineering: A,2016,664,188.
31 Wei L F, Zhao Z L, Gao J J. Journal of Crystal Growth,2018,483,275.
32 Farag M M, Matera R, Flemings M C. Metallurgical Transactions B,1979,10(3),381.
33 Clark J B. Acta Materialia,1965,13,128.
34 Estrin Y, Nene S S, Kashyap B P, et al. Materials Letters,2016,173,252.
35 Zhang W, Xiao W, Wang F, et al. Journal of Alloys and Compounds,2016,684,8.
36 Xia X, Sun W, Luo A A, et al. Acta Materialia, 2016,111,335.
37 Julia L, Freer G. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation. Ph.D. Thesis, University of California, US,1993.
38 Jung J, Park J. Scripta Materialia,1996,34,1581.
39 Cao H, Wessén M. Metallurgical and Materials Transactions A,2004,35,309.
40 Jeong C, Kang C S, Cho J. International Journal of Cast Metals Research,2008,2,193.
41 Rios C, Milenkovic S, Gama S, et al. Journal of Crystal Growth,2002,237,90.
42 Böyük U, Marasli N. Materials Chemistry and Physics,2010,119,442.
43 Zener C. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1946,167,550.
44 Mullins W W, Sekerka R F. Journal of Applied Physics,1964,35,444.
45 Hillert M. Journal of Pharmaceutical Sciences,1957,141,757.
46 Jackson K A, Hunt J D. Transaction of American Institute of Mining, Me-tallurgical, and Petroleum Engineers,1966,236,843.
47 Jackson K A, Hunt J D. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1966,236,1129.
48 Kassner K, Misbah C. Physical Review A,1991,44,6513.
49 Somboonsuk K, Mason J T, Trivedi R. Metallurgical and Materials Tran-sactions A,1984,15,967.
50 Busse F H, Kramer L. Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems, Plenum Press, New York,1990,pp.445.
51 Akamatsu S, Plapp M, Faivre G, et al. Physical Review E,2002,66,030501.
52 Akamatsu S, Bottin-Rousseau S, Perrut M, et al. Journal of Crystal Growth,2007,299,418.
53 Teng J, Liu S, Trivedi R. Acta Materialia,2008,56,2819.
54 Georgelin M, Pocheau A. Physical Review E,1998,57,3189.
55 Georgelin M, Pocheau A. The European Physical Journal B,1998,4,169.
56 Witusiewicz V T, Sturz L, Hecht U, et al. Acta Materialia,2004,52,4561.
57 Sturz L, Witusiewicz V T, Hecht U, et al. Journal of Crystal Growth,2004,270,273.
58 Witusiewicz V T, Hecht U, Rex S. Acta Materialia,2014,65,360.
59 Brandt W H. Journal of Applied Physics,1945,16,139.
60 Chen Y J, Davis S H. Acta Materialia,2001,49,1363.
61 Langer J S. Physical Review Letters,1980,44,1023.
62 Brattkus K, Caroli B, Caroli C. Journal of Physics,1990,51,1847.
63 Datye V, Langer J S. Physical Review B,1981,24,4155.
64 Xu J J, Chen Y Q. Acta Materialia,2014,80,220.
65 Li X M, Xu F. Journal of Crystal Growth,2017,468,945.
66 Akamatsu S, Bottin-Rousseau S, Šerefoglu M. Acta Materialia,2012,60,3199.
67 Philipp Steinmetz, Johannes Hötzer, Michael Kellner. Computational Materials Science,2016,117,205.
68 Philipp Steinmetz, Michael Kellner, Johannes Hötzer. Computational Materials Science,2016,121,6.
69 Nestler B, Garcke H, Stinner B. Physical Review E,2005,71,041609.
70 Choudhury A, Plapp M, Nestler B. Physical Review E,2011,83,051608.
71 Hötzer J, Steinmetz P, Jainta M, et al. Acta Materialia,2016,106,249.
72 Hötzer J, Jainta M, Steinmetz P, et al. Acta Materialia,2015,93,194.
73 Steinmetz P, Yuksel C. Hötzer J, et al. Acta Materialia,2016,103,192.
74 Andrea Parisi, Mathis Plapp. Acta Materialia,2008,56,1348.
75 A Karma. Physical Review Letters,1987,59(1),71.
76 Kassner K, Misbah C. Physical Review A,1991,44,6513.
77 Folch R, Plapp M. Physical Review E,2005,72,011602.
78 Perrut M, Parisi A, Akamatsu S. Acta Materialia,2010,58,1761.
79 Supriyo Ghosh, Mathis Plapp. Acta Materialia,2017,140,140.
80 Akamatsu S, Nguyen-Thi H. Acta Materialia,2016,108,325.
81 Melis Šerefoglu. Physical Review E,2011,84,011614.
82 Kurz W, Fisher D. Fundamentals of Solidification, Trans Tech Press, Switzerland,1992.
83 Alkemper J, Sous S, Ratke L, et al. Journal of Crystal Growth,1998,191,252.
84 Dold P, Heidler M, Drevermann A, et al. Journal of Crystal Growth,2003,256,352.
85 Murphy A G, Li J, Janson O, et al. Materials Science Forum,2014,790-791,52.
86 Quea Z P, Gua J H, Shinb J H, et al. Materials Today: Proceedings,2014,1,17.
87 Liu Dan, Zhang Huawei, Li Yanxiang, et al. Materials & Design,2017,119,199.
88 Parisi A, Plapp M. Frontiers of Physics,2010,90,26010.
89 Silvère A, Plapp M. Current Opinion in Solid State and Materials Science,2016,20,46.
90 Caroli B, Caroli C, Faivre G, et al. Journal of Crystal Growth,1992,118,135.
91 Akamatsu S, Bottin-Rousseau S, Faivre G, et al. Acta Materialia,2012,60,3206.
92 Mikael Perrut, Sabine Bottin-Rousseau, Gabriel Faivre, et al. Acta Materialia,2013,61,6802.
93 Akamatsu S, Bottin-Rousseau S, Faivre G. Physical Review Letters,2004,93,17.
94 Andrea Parisi, Mathis Plapp. Acta Materialia,2008,56,1348.
95 Ludmil Drenchev, Jerzy Sobczak, Natalie Sobczak, et al. Acta Materialia,2007,55(19),6459.
96 Yamamura S, Shiota H, Murakami K. Materials Science and Engineering: A,2001,318(1-2),137.
97 Hyun S K, Ikeda T, Nakajima H. Advanced Engineering Materials,2004,6,337.
98 Kashihara M, Hyun S K, Yonetani H. Scripta Materialia,2006,54,509.
99 Hirofumi Onishi, Soong-Keun Hyun, Hideo Nakajima. Materials Transactions,2006,47,2120.
100 Wei P S, Huang C C, Lee K W. Metallurgical and Materials Transactions B,2003,34B,321.
101 Li X M, Li W Q, Jin Q L, et al. Chinese Physics B,2013,22(7),547(in Chinese).
李向明,李文琼,金青林,等.中国物理B,2013,22(7),547.
102 Liu Yuan, Li Yanxiang. Scripta Materialia,2003,49,379.
103 Karma A, Sarkissian A. Metallurgical & Materials Transactions A,1996,27(3),635.
104 Ginibre M, Akamatsu S, Faivre G. Physical Review E,1997,56(1),780.
105 Akamatsu S, Plapp M, Faivre G, et al. Metallurgical and Materials Transactions B,2004,35,1815.
106 Wei Lufeng, Zhao Zhilong, Gao Jianjun, et al. Journal of Crystal Growth,1992,483,275.
107 Lu Yiping, Gao Xuzhou, Jiang Li, et al. Acta Materialia,2017,124,143.
108 Yang C, Kang L M, Li X X, et al. Acta Materialia,2017,132,491.
109 Yang Yujuan, Wang Jincheng, Zhang Yuxiang, et al. Journal of Crystal Growth,2009,311,2496.
110 Li Xinzhong, Liu Dongmei, Sun Tao, et al. Transactions of Nonferrous Metals Society of China,2010,20(2),302(in Chinese).
李新中,刘冬梅,孙涛,等.中国有色金属学报,2010,20(2),302.
111 Li Feng, Feng Xiaojing, Lu Yang, et al. Computational Materials Science,2017,137,171.
112 Lei Wang, Nan Wang, Nikolas Provatas. Acta Materialia,2017,126,302.
113 Lin Xin, Cao Yongqing, Wang Zhitai, et al. Acta Materialia,2017,126,210.
114 Matthew C, Amrutur V, Richard N, et al. Journal of Crystal Growth,2009,311,327.
115 Wei P S, Huang C C, Wang Z P, et al. Journal of Crystal Growth,2009,270,662.
116 Mergy J, Faivre G, Guthmann C, et al. Journal of Crystal Growth,1993,134,353.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[8] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[9] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[10] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[11] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[12] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[13] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[14] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[15] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(21): 3743-3753.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed