Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 167-174    https://doi.org/10.11896/cldb.201901020
  材料与可持续发展(二)——材料绿色制造与加工* |
同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展
安晓龙, 吕云卓, 覃作祥, 陆兴
大连交通大学材料科学与工程学院,大连 116028
Research Progress on the Numerial Simulation of a Melting Pool Coupling of Light-Powder and Gas-Liquid Interface Tracking by Coaxial Powder Metal Laser 3D Printing
AN Xiaolong, LYU Yunzhuo, QIN Zuoxiang, LU Xing
School of Material Science and Engineering, Dalian Jiaotong University, Dalian 116028
下载:  全 文 ( PDF ) ( 3342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属激光3D打印作为一种“无需工具”的数字化制造技术,摆脱了传统加工方式的约束,将有可能改变产品的生产模式,给企业和消费者带来巨大的经济效益和社会效益。它利用层层堆积的精密加工模式,使得高精度复杂结构制造变为可能。这将极大简化产品设计环节,提高零部件的集成度,缩小产品的研发周期。相对于利用切削机床对毛坯进行加工的“减材制造”,3D打印制造减少了原材料的使用量,降低了对自然环境的压力。
   3D打印技术实际上是一个“逐点扫描-逐线搭接-逐层堆积”的循环往复过程,在长时间的加工过程中,零件的不同部位材料均经受着一系列短时变温、非稳态、强约束、循环固态相变的微热处理过程。这种微热处理的加热及冷却速度极快、相变持续时间极短,且每一微热处理的相变温度、加热及冷却速度和相变持续时间均随热循环次数的变化而变化,使得激光3D打印的金属构件显微组织结构独特,并表现出对加工工艺条件强烈的依赖性,进而影响成型零部件的综合力学性能。因此,实现对激光3D打印金属零部件显微组织结构、冶金缺陷的主动控制是亟待解决的关键问题。
   其中掌握同轴送粉金属激光3D打印加工过程中粉末流与激光束的耦合作用,以及熔池气-液自由界面的传质和扩展特征,是选择最优加工参数,获得综合力学性能优良的金属零件的关键。然而,采用试验分析途径难以精确并定量地揭示上述问题,但数值仿真模拟却能有效揭示其微观规律。例如在光-粉耦合作用方面,目前大部分研究学者从单个粉末颗粒到粉末流对激光束产生衰减的角度出发,研究了激光束与粉末相互作用的机理;另一方面其他研究人员从粉末颗粒对激光束吸收和散射的角度建立数学模型,利用米氏散射理论和朗伯-比尔定律仿真分析计算了粉末流与激光束的相互作用。而包含粉末流对激光束产生衰减以及粉末流吸收并反射、散射激光等多角度多因素的数值模型却鲜有报道,因此,这些方面是学者今后研究的主要方向。
   本文主要综述了国内外研究学者对同轴送粉金属激光3D打印仿真模拟的研究进展,并详细阐述了3D打印过程中的光-粉耦合作用、熔池气-液界面和固-液界面追踪等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安晓龙
吕云卓
覃作祥
陆兴
关键词:  同轴送粉  激光3D打印  光粉耦合作用  气液界面追踪  数值模拟    
Abstract: As a “toolless” digital manufacturing technology, metal laser 3D printing that get rid of the limitation of traditional processing methods is very likely to change the production mode of products and highly benefit the social and consumers. The 3D printing technology makes the high precision complex structure manufacturing possible through the precision machining mode of layer stacking, which will consumedly simplify the pro-duct design process, improve the integration of components and accelerate the producting cycles. Furthermore, compared to the “subtract mate-rial manufacturing” of blanks with cutting machines, 3D printing technology can reduce the amount of raw materials and greatly relieve the pressure of natural environment. Actually, 3D printing manufacturing is a “point by point scanning-line by line lapping-layer by layer stacking” cyclic process. During the process of the long time manufacturing, different parts of the material have went through a series of micro-heat treatment processes,including short-term temperature changes, unstable state, strong constraint and cyclic solid phase transition . The heating and cooling rate of these micro-heat treatments are extremely fast and the time of phase transition is very short. And the phase transition temperature, heating and cooling rate and phase transition duration of each micro-heat treatment change with the number of thermal cycles. Thus, the laser 3D printed metal components obtain a unique microstructure and exhibit a strong dependence on the processing conditions, which in turn affects the mecha-nical properties of the molded parts. Therefore, achieving the active control of the microstructure and metallurgical defects of laser 3D printed metal parts is crucial issue to be solved. The mastering of the coupling effect of the powder flow and the laser beam in the 3D printing process of the coaxial powder feeding metal laser, and the mass transfer and expansion characteristics of the gas-liquid free interface of the molten pool are the pivotal to select the optimal processing parameters and hence lead to an excellent mechanical properties of the metal. However, it is hard to accurately and quantitatively reveal the above problems by the means of experimental analysis. Yet the numerical simulation is capable of effectively revealing the microscopic laws . For example, in the aspect of light-powder coupling, most researchers currently study the interaction mechanism between laser beam and powder from the perspective of laser beam attenuation from single powder particle to powder flow. On the other hand, other researchers establish the mathematical model from the perspective of powder particle absorption and scattering to the laser beam, and adopt the Mie scattering theory and the Lambert-Beer law to analyse and calculate the interaction between the powder flow and the laser beam. Howe-ver, the reports revolve round numerical models including multi-angle and multi-factors such as powder flow attenuation on laser beam and absorption of powder flow and reflection and scattering of laser light is rare, therefore, the above aspects will be the main research direction of scholars in the future.
This paper mainly reviews the research progress of 3D printing simulations of coaxial powder metal laser in domestic and foreign research scho-lars, and elaborates the light-powder coupling, the gas-liquid interface and the solid-liquid interface tracking algorithm etc in the 3D printing process.
Key words:  coaxial powder feeding    laser 3D printing    light-powder coupling    gas-liquid interface tracking    numerical simulation
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG495  
基金资助: 国家自然科学基金(51671043;51401041;51671042);大连交通大学研究生创新创业项目课题(C-2017-12)
作者简介:  安晓龙,现为大连交通大学硕士研究生,从事激光增材制造工艺研究。陆兴,大连交通大学材料科学与工程学院教授、博士研究生导师, lu@djtu.edu.cn。
引用本文:    
安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
AN Xiaolong, LYU Yunzhuo, QIN Zuoxiang, LU Xing. Research Progress on the Numerial Simulation of a Melting Pool Coupling of Light-Powder and Gas-Liquid Interface Tracking by Coaxial Powder Metal Laser 3D Printing. Materials Reports, 2019, 33(1): 167-174.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901020  或          http://www.mater-rep.com/CN/Y2019/V33/I1/167
1 Zhang D Y. Laser manufacturing process, Tsinghua University Press,2008(in Chinese).张冬云.激光制造工艺,清华大学出版社,2008.2 Chen J M, Xu X Y, Xiao R S. Laser modern manufacturing technology, Beijing National Defense Industry Press,2007(in Chinese).陈继民,徐向阳,肖荣诗.激光现代制造技术,国防工业出版社,2007.3 Xi M Z, Yu G, Zhang Y Z, et al. Chinese Laser,2005,32(4),562(in Chinese).席明哲,虞钢,张永忠,等.中国激光,2005,32(4),562.4 Yang X C. Chinese Laser,2008,35(11),1664(in Chinese).杨洗陈.中国激光,2008,35(11),1664.5 Shi S H, Wang C, Xu A Q, et al. Chinese Laser,2012(3),56(in Chinese).石世宏,王晨,徐爱琴,等.中国激光,2012(3),56.6 He X, Fuerschbach P W, DebRoy T. Journal of Physics D: Applied Phy-sics,2003,36,1388.7 Zhao L, Tsukamoto S, Arakane G, et al. Science & Technology of Wel-ding & Joining,2011,16 (2),166.8 Do-Quang M, Amberg G, Pettersson C O. Journal of Heat Transfer,2008,130(9),253.9 He X, Mazumder J. Journal of Applied Physics,2007,101(5),2645.10 Bahrami A, Valentine D T, Helenbrook B T, et al. International Journal of Heat and Mass Transfer,2015,85,41.11 Zhang Y J, Yu G, He X L. Science China (Physics, Mechanics and Astronomy,2012,55(8),1431.12 Gan Z T, Liu H , Li S X, et al. International Journal of Heat and Mass Transfer,2017,111,709.13 Lu B H, Li D C. Machinery Manufacturing and Automation,2013,42(4),1(in Chinese).卢秉恒,李涤尘.机械制造与自动化,2013,42(4),1.14 Keicher D M, Smugeresky J E, Romero J A, et al. In: Proceedings of the SPIE-The International Society for Optical Engineering. Orlando,1997.15 Huang W D, Li Y M, Feng L P, et al. Journal of Material Engineering,2002(3),40(in Chinese).黄卫东,李延民,冯莉萍,等.材料工程,2002(3),40.16 Jia W P, Lin X, Chen J, et al. Chinese Laser,2007,34(9),1308(in Chinese).贾文鹏,林鑫,陈静,等.中国激光,2007,34(9),1308.17 Huang W D, Lin X, Chen J, et al. Laser Solid Forming, Northwestern Polytechnical University press,2007(in Chinese).黄卫东,林鑫,陈静,等.激光立体成形,西北工业大学出版社,2007.18 David S A, DebRoy T. Science,1992,257(5069),497.19 Toyserkani E, Corbin S, Khajepour A. Laser Cladding, CRC Press,2005.20 Tang Q, Pang S, Chen B, et al. International Journal of Heat and Mass Transfer,2014,78(7),203.21 Hu Y, He X, Yu G, et al. Applied Surface Science,2012,258(15),5914.22 Kumar A, Roy S. Computational Materiasl Science,2009,46(2),495.23 Gan Z, Yu G, He X,et al. International Journal of Heat and Mass Transfer,2017,104,28.24 Liu X M, Guan Z Z. Chinese Laser,1999,26(6),565(in Chinese).刘喜明,关振中.中国激光,1999,26(6),565.25 Srdja Zekovic, Rajeev Dwivedi, Radovan Kovacevic. International Journal of Machine Tools & Manufacture,2007,47,112.26 Qi H,Mazumder J,Green L,et al. Journal of Laser Applications,2005,17(3),136.27 Tabernero I, Lamikiz A, Martínez S. Journal of Materials Processing Technology,2012,212,516.28 Huang Y L, Liang G Y. Modelling and Simulation in Material Science and Engineering,2005,13(1),47.29 Pinkerton A J. Journal of Physics D: Applied Physics,2007,40(23),7323.30 Huan Qi ,Jyotirmoy Mazumder, Hyungson Ki. Journal of Applied Physics,2006,100,024903.31 Choi J,Han L,Hua Y. Journal of Heat Transfer,2005,127(9),978.32 Lee Y S, Nordin M, Babu S S, et al. Welding Journal,2014,(93),292.33 He X, Mazumder J. Journal of Applied Physics 2007,101,053113. 34 Kong F, Kovacevic R. Metallurgical & Materials Transactions B,2010,41(6),1310.35 Gan Z T, Yu G, He X L, et al. International Communications in Heat and Mass Transfer,2017,86,206.36 Acharyar R, Bansalr R, Gambone J J, et al. Metallurgical and Materials Transactions B,2014,45(6),2247.37 Manvatkar V, De A, Debroy T. Materials Science and Technology,2015,31(8),924.38 Chatterjee D, Chakraborty S. Physics Letters A,2006,351(4-5),359.39 Geiger M, Leitz K H, Koch H, et al. Production Engineering,2009,3(2),127.40 Zhao Lin, Tsukamoto Susumu, Arakane Goro, et al. Chinese Laser,2015(4),210(in Chinese).赵琳,塚本进,荒金吾郎,等.中国激光,2015(4),210.41 Cho W, Na S, Cho M, et al. Computational Materials Science,2010,49(4),792.42 Wei H L, Mazumder J, Debroyt. Scientific Reports,2015,5,16446.43 Zhou J, Tsai H L. Journal of Physics D: Applied Physics,2009,42(9),95502.44 Fallah V, Amoorezaei M, Provatas N, et al. Acta Materialia,2012,60(4),1633.45 Yin H, Felicelli S D. Acta Materialia,2010,58(4),1455.46 Wei L, Lin X,Wang M, et al. Acta Physica Sinica,2015,64(1),348(in Chinese).魏雷,林鑫,王猛,等.物理学报,2015,64(1),348.47 Zhang Dongyun, Wu Rui, Zhang Huifeng, et al. Chinese Laser,2015,42(5),104(in Chinese).张冬云,吴瑞,张晖峰,等.中国激光,2015,42(5):104.48 Song Jianli, Li Yongtang, Deng Qilin, et al. Journal of Mechanical Engineering,2010,46(14),29(in Chinese).宋建丽,李永堂,邓琦林,等.机械工程学报,2010,46(14),29.49 Liu Hao, Yu Gang, He Xiuli, et al. Chinese Laser,2013,40(12),78(in Chinese).刘昊,虞钢,何秀丽,等.中国激光,2013,40(12),78.50 Deng Zhenbo, Mei Xiaoqin, Xiang Zhaowei,et al. Journal of Sichuan University(Engineering Science Edition),2016,48(2),165 (in Chinese).邓珍波,梅筱琴,向召伟,等.四川大学学报(工程科学版),2016,48(2),165.51 Huang Y L, Liang G Y, Su J Y. Acta Metallurgica Sinica (English Letters),2004,17(1),21.52 Zuo Tiechuan. The Advanced Manufacturing in the 21st Century-Laser Technology and Engineering, Science Press,2007(in Chinese).左铁钏.21世纪的先进制造-激光技术与工程,科学出版社,2007.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[8] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[9] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[10] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[11] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[12] 李文旭, 马昆林, 龙广成, 谢友均, 马聪, 李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[13] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[14] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed