Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3043-3049    https://doi.org/10.11896/cldb.18010176
  无机非金属及其复合材料 |
考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟
李荣涛1, Christopher Y. TUAN2
1 大连大学建筑工程学院,大连 116622
2 Department of Civil Engineering,University of Nebraska-Lincoln, Omaha NE 68182,USA
Numerical Simulation on Multiphase Transportation and Phase Transition in Chloride Contaminated Concrete with the Thermo-Hygro Coupled Effects
LI Rongtao1, Christopher Y. TUAN2
1 College of Civil Engineering and Architecture, Dalian University, Dalian 116622
2 Department of Civil Engineering, University of Nebraska-Lincoln, Omaha NE 68182, USA
下载:  全 文 ( PDF ) ( 3170KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在富含氯化物的环境中,氯离子引起的钢筋锈蚀是导致钢筋混凝土结构性能退化的主要原因之一。如何预测氯离子侵蚀过程以及提高结构抗侵蚀能力是混凝土结构工程师所必须面临的最严峻挑战。为此,本实验建立了一个用于数值分析混凝土中氯离子传输过程的计算模型。为能再现混凝土结构在非饱和、非等温条件下的真实状况,模型控制方程中考虑了氯离子、湿分、空气、热量在混凝土中的耦合传输过程,以及相互间的耦合作用。控制方程中所涉及的耦合系数均来自已有的材料模型和实验数据,而方程的数值求解使用了有限单元法。模型计算结果与试验数据显示出良好的吻合度,研究结果可为混凝土结构的减防腐蚀灾害设计提供重要的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李荣涛
Christopher Y. TUAN
关键词:  氯离子传输  混凝土  热湿耦合作用  数值模拟  有限元法    
Abstract: Corrosion of reinforcing steel due to chloride attack is one of the main causes of deterioration process for reinforced concrete structures exposed to chloride-rich environment. How to predict the chloride penetration process into concrete structures and improve the penetration resistance of concrete to various chloride sources are the most serious challenges to concrete structural engineers that they have to face. Therefore, a theoretical and computational model for chloride transport in concrete was presented. The governing equations take into account the coupled transport process of chloride ions, moisture, air and heat. This represents the actual condition of concrete structures which are always found in non-saturated and non-isothermal conditions. The fully coupled effects among chloride, moisture, and heat diffusion were considered and included in the model. The coupling parameters evaluated based on the available material models and test data were proposed and explicitly incorporated in the governing equations. Then the coupled transport equations were solved numerically by the finite element method. The validation was performed by comparing the numerical results obtained from the present model with the available test data and a good agreement was observed. And the research results will provide important reference for the anticorrosion design of concrete structures in practical engineering application.
Key words:  chloride transport    concrete    thermo-hygro coupled effects    numerical simulation    finite element method
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(11302034);辽宁省教育厅基金(L2011215)
通讯作者:  26793661@qq.com   
作者简介:  李荣涛,大连大学建筑工程学院,副教授,2007年毕业于大连理工大学,获工学博士学位。主要从事灾害环境下混凝土结构劣化的数值分析研究。在国内外学术期刊发表论文20余篇。
引用本文:    
李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
LI Rongtao, Christopher Y. TUAN. Numerical Simulation on Multiphase Transportation and Phase Transition in Chloride Contaminated Concrete with the Thermo-Hygro Coupled Effects. Materials Reports, 2019, 33(18): 3043-3049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010176  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3043
[1] He Z X, Shi C J, Hu X, et al. Journal of the Chinese Ceramic Society, 2015, 43(8), 1111(in Chinese).何宗旭, 史才军,胡翔, 等. 硅酸盐学报, 2015, 43(8), 1111.
[2] Tang M K, Wang T, He Y, et al. Nonferrous Metals Science and Engineering, 2015, 6(3), 105(in Chinese).唐敏康, 王霆, 何勇, 等. 有色金属科学与工程, 2015, 6(3), 105.
[3] Shi J J, Sun W.Journal of the Chinese Ceramic Society, 2010, 38(9), 1753(in Chinese).施锦杰, 孙伟. 硅酸盐学报, 2010, 38(9), 1753.
[4] Wang L C, Wang J Z. Journal of Building Structures, 2008, 29(s1), 192(in Chinese).王立成, 王吉忠. 建筑结构学报, 2008, 29(s1), 192.
[5] Jin W L, Jin L B, Yan Y D, et al. Journal of Hydralic Engineering, 2009, 40(3), 364(in Chinese).金伟良, 金立兵, 延永东, 等. 水利学报, 2009, 40(3), 364.
[6] Shazali M A, Rahman M K, Al-Gadhib A H, et al. Arabian Journal for Science and Engineering, 2012, 37(2), 469.
[7] Morga M, Marano G C. International Journal of Concrete Structures & Materials, 2015, 9(2), 173.
[8] Wu L Q, Zhang X H, Jiang L H, et al. Materials Review A:Review Papers, 2015, 29(9), 106(in Chinese).武利强, 章晓桦, 蒋林华, 等. 材料导报:综述篇, 2015, 29(9), 106.
[9] Marchand J, Samson E. Cement and Concrete Composites, 2009, 31(8), 515.
[10] Yue Z W, Li J P, Yang B. Journal of Tongji University (Natural Scie-nce), 2015, 43(1), 60(in Chinese).岳著文, 李镜培, 杨博. 同济大学学报(自然科学版), 2015, 43(1), 60.
[11] Huang Y, Wei J, Dong R Z, et al. Journal of Wuhan University of Technology, 2014, 29(3), 445.
[12] Guan B W, Yang T, Yu D M, et al. Materials Review B:Research Papers, 2016, 30(10), 152(in Chinese).关博文, 杨涛, 於德美, 等. 材料导报:研究篇, 2016, 30(10), 152.
[13] Lewis R W, Schrefler B A. The finite element method in the static and dynamic deformation and consolidation of porous media, Chichester: Wiley & Sons, UK, 1998.
[14] Hassanizadeh S M, Gray W G. Advances in Water Resources, 1979, 2, 131.
[15] Hassanizadeh S M, Gray W G. Advances in Water Resources, 1979, 2, 191.
[16] Ishida T, Iqbal P O, Anh H T L. Cement and Concrete Research, 2009, 39(10), 913.
[17] Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media, Kluwer Academic Publishers, Netherlands, 1991.
[18] Gawin D, Majorana C E, Scherefler B A. Mechanics of Cohesive-Frictio-nal Materials, 1999, 4(1), 37.
[19] Charlier R. Approche unifiée de quelques problèmes non linéqires de mécanique des milieux continus par la méthode des éléments finis. Ph. D. Thesis. Université de Liège, Belgium, 1987.
[20] Cerny R, Pavlik Z, Rovnanikova P. Cement & Concrete Composites, 2004, 26(6), 705.
[21] Rucker P, Krus M, Holm A. Bauphysik, 2003, 25(5), 296.
[22] Scherer G W. Cement Concrete Research, 2004, 34(9), 1613.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[7] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[8] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[9] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[10] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[11] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[12] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[13] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[14] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[15] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[8] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed