Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3306-3312    https://doi.org/10.11896/cldb.18070130
  金属与金属基复合材料 |
镁合金微观组织的相场法模拟进展
贾森森1, 王永彪1, 肖艳秋1, 吴玉娟2, 彭立明2, 刘建秀1, 刘新田1
1 郑州轻工业大学河南省机械装备智能制造重点实验室,郑州 450002;
2 上海交通大学材料科学与工程学院,上海 200240
Research Progress of the Phase-field Simulation in Magnesium Alloy Microstructure
JIA Sensen1, WANG Yongbiao1, XIAO Yanqiu1, WU Yujuan2, PENG Liming2, LIU Jianxiu1, LIU Xintian1
1 Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002;
2 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 3775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金微观组织是决定其后期力学性能的关键因素之一。由于镁合金密排六方结构(hcp)的复杂性,传统的微观组织表征手段已经不能完全满足对镁合金组织形貌和演化过程的跟踪。随着数值模拟技术的发展,相场法模拟技术以其独特的优势逐渐成为当下模拟镁合微观组织演化的有力工具。
密排六方结构具有不同于面心立方结构晶体(fcc)的各向异性特征,需要建立适合hcp结构的相场模型。目前,很多相场模拟大都集中于立方结构体系的合金,对hcp结构的合金相场模拟的研究起步较晚。尤其是镁合金,作为最轻的金属结构材料,具有密度小,比强度、比刚度高等优点,在航空、汽车及国防军工等领域得到广泛应用。虽然近年来对镁合金微观组织演化进行了大量相场模拟研究,但是仍面临许多问题:(1)研究大都集中在商用镁合金模拟工作上,而其他镁基合金如镁稀土合金的模拟研究相对较少;(2)模拟尺度大多为二维空间,三维、四维尺度的模拟成果相对不多;(3)关于电场、超声场、磁场等物理场下镁合金微观组织的模拟工作相对较少。
近年来,以相场法模拟为基础,在模拟过程中分别将外场等不同因素考虑进来,使得镁合金在枝晶组织演变、晶粒生长、沉淀相析出领域的二维和三维模拟更接近真实情况。基于相场模型与热物理参数而提出的KKS模型和多相场模型被最早应用于镁合金凝固过程中,且得到与实验结果相似的模拟结果,这快速推进了合金微观组织的模拟研究,但多相场模型和KKS模型的模拟结果大都是定性描述,很难做到定量对比,而Karma定量模型与各向异性参数的结合有效解决了相场模拟的定量问题。随后,相场模拟被应用于镁合金的再结晶领域,重现了再结晶形核和晶粒长大在不同退火温度下的微观演化过程,并揭示了再结晶形核和长大的动力学机制。相场模拟镁合金固态相变的研究起步相对较晚,模拟过程中需要考虑界面能和弹性应变能的相互作用,析出相呈现与实验结果相近的菱形或板条状形貌。
本文首先详细介绍了相场模拟技术在镁合金凝固微观组织的应用与发展,论述了相场模拟技术在镁合金微观凝固组织演化的实验成果,随后对镁合金再结晶晶粒生长的相场模拟研究状况进行了阐述,同时还综述了近年来相场模拟在镁合金固态相变过程的发展历程。最后本文指出相场模拟在镁合金微观组织演化存在的主要问题,并展望了该领域的发展趋势及未来前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾森森
王永彪
肖艳秋
吴玉娟
彭立明
刘建秀
刘新田
关键词:  镁合金  微观组织  相场法  数值模拟    
Abstract: Magnesium alloy microstructure is one of the key factors determining the mechanical properties of the later stage. Due to the complexity of the hexagonal structure (hcp) of magnesium alloys, the traditional microscopic characterization methods can not fully satisfy the tracking of the microstructure and evolution of magnesium alloys. With the development of numerical simulation technology, phase field simulation technology has gradually become a powerful tool for simulating the microstructure evolution of magnesium alloy with its unique advantages.
The close-packed hexagonal structure has an anisotropic feature different from the face-centered cubic crystal (fcc), and a phase field model suitable for the hcp structure needs to be established. At present, many of the phase field simulations are mostly concentrated on the alloy of the cubic structural system, and the phase field simulation of the alloy of hcp structure is relatively late. In particular, magnesium alloy, as the lightest metal structural material, has the advantages of low density, high specific strength and high specific stiffness, and is widely used in aviation, automobile and defense military industries. Although a large number of phase field simulation studies on the microstructure evolution of magnesium alloys have been carried out in recent years, many problems still face: (i) most of the research is concentrated on the simulation of commercial magnesium alloys, while the simulation studies of other magnesium-based alloys such as magnesium rare earth alloys are relatively comparative; (ii) the simulation scales are mostly two-dimensional, and the simulation results of three-dimensional and four-dimensional scales are relatively few; (iii) the simulation work of magnesium alloy microstructure under the physical field, ultrasonic field, magnetic field and other physical fields is relatively small.
In recent years, based on phase-field simulation, different factors such as external field are taken into account in the simulation process, which makes the two-dimensional and three-dimensional simulation of magnesium alloy in the field of dendrite evolution, grain growth and precipitation phase precipitation more realistic. The KKS model and multiphase field model based on the phase field model and thermophysical parameters were first applied in the solidification process of magnesium alloy, and the simulation results similar to the experiment were obtained. The simulation of the microstructure of the alloy was quickly advanced, but the multiphase field The simulation results of the model and the KKS model are mostly qualitative descriptions, and it is difficult to achieve quantitative comparison. The combination of Karma quantitative model and anisotropic parameters effectively solves the quantitative problem of phase field simulation. Subsequently, the phase field simulation applied to the recrystallization of magnesium alloys, recurring the microscopic evolution of recrystallization nucleation and grain growth at different annealing temperatures, and revealed the dynamic mechanism of recrystallization nucleation and growth. The phase field simulation of solid-state phase transition of magnesium alloy started relatively late. The interaction between interface energy and elastic strain energy needs to be considered in the simulation process. The precipitated phase presents a diamond-shaped or lath-like morphology similar to the experimental results.
Based on the introduction of phase field method, this paper first introduces the application and development of phase field simulation technology in solidification microstructure of magnesium alloy, and discusses the experimental results of phase field simulation technology in the microstructure solidification microstructure of magnesium alloy, followed by recrystallization of magnesium alloy. The phase field simulation study of grain growth is described. The development history of phase field simulation in magnesium alloy solid phase transformation process is also reviewed. Finally, the paper points out the main problems of phase field simulation in the microstructure evolution of magnesium alloy, and looks forward to the development trend and future prospects of this field.
Key words:  magnesium alloy    microstructure    phase-field method    numerical simulation
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG113.12  
基金资助: 郑州轻工业大学博士科研启动基金(010013501050043)
作者简介:  贾森森,2017年7月毕业于华北水利水电大学,获得工学学士学位,现为郑州轻工业大学硕士研究生。目前主要研究领域为镁稀土合金同步辐射。王永彪,郑州轻工业大学机电工程学院讲师,硕士研究生导师。2017年毕业于上海交通大学并取得博士学位,美国宾尼法尼亚州立大学访问学者。主要研究方向为多尺度模拟及同步辐射表征。国内外刊物发表学术论文10余篇,其中SCI/EI检索6篇。wsbiaoyongwang@163.com
引用本文:    
贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
JIA Sensen, WANG Yongbiao, XIAO Yanqiu, WU Yujuan, PENG Liming, LIU Jianxiu, LIU Xintian. Research Progress of the Phase-field Simulation in Magnesium Alloy Microstructure. Materials Reports, 2019, 33(19): 3306-3312.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070130  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3306
1 Riabkina-Fishman M, Rabkin E, Levin P, et al. Materials Science & Engineering A,2001,302(1),106.2 Diepers H J, Beckermann C, Steinbach I. Acta Materialia,1999,47(13),3663.3 Luo A A. Metallurgical Reviews,2004,49(1),13.4 Agnew S R, Nie J F. Scripta Materialia,2010,63(7),671.5 Hono K, Mendis C L, Sasaki T T, et al. Scripta Materialia,2010,63(7),710.6 Mendis C L, Oh-Ishi K, Ohkubo T, et al. Scripta Materialia,2011,64(2),137.7 Gao X, He S M, Zeng X Q, et al. Materials Science & Engineering A,2006,431(1),322. 8 Wang T M, Wei J J, Wang X D, et al. Acta Metallurgica Sinica,2018,54(2),193(in Chinese).王同敏,魏晶晶,王旭东,等.金属学报,2018,54(2),193.9 Oldfield W. ASM Transformations,1966,59,94510 Favier J J, Hunt J D, Sahm P R. Metals and alloys, Springer Berlin Heidelberg, Germany,1987.11 Rappaz M, Charbon C, Sasikumar R. Acta Metallurgica Et Materialia,1994,42(7),2365.12 Stefanescu D M, Abbaschian G J, Bayuzick R J, et al. Solidification processing of eutectic alloys,ASM International, USA,1988.13 Szpunar B, Smith R W. Canadian Metallurgical Quarterly,1996,35(3),299.14 Das A, Mittemeijer E J. Philosophical Magazine A,2001,81(11),2725.15 Das A, Ji S, Fan Z. Acta Materialia,2002,50(18),4571.16 Das A, Fan Z. Materials Science & Engineering A,2004,365(1-2),330.17 Wolfram S. Reviews of Modern Physics,1983,55(3),601.18 Gandin C A, Desbiolles J L, Rappaz M, et al. Metallurgical and Mate-rials Transactions A,1999,30(12),3153.19 Xu Q Y, Liu B C, Liang Z J. Materials Science Forum,2005,475,3137.20 Raabe D. Recrystallization Simulation by use of Cellular Automata, Handbook of Materials Modeling,Springer Netherlands,Germany,2005.21 Saito Y, Goldbeck-Wood G, Müller-Krumbhaar H. Physical Review A General Physics,1988,38(4),2148.22 Juric D, Tryggvason G. Journal of Computational Physics,1996,123(1),127.23 Osher S, Sethian J A. Journal of Computational Physics,1988,79(1),12.24 Osher S, Fedkiw R, Piechor K. Applied Mechanics Reviews,2004,57(3),273.25 Burger M, Mennucci A C G, Osher S, et al. Level set and PDE based reconstruction methods in imaging,Springer International Publishing, Germany,2013.26 Chen L Q. Annual Review of Materials Research,2002,32(32),113.27 Böttger B, Eiken J,Steinbach I. Acta Materialia,2006,54(10),2697.28 Eiken J, Böttger B, Steinbach I. Transactions of the Indian Institute of Metals,2006,1(2-3),489.29 Fries S G, Boettger B, Eiken J, Steinbach I. International Journal of Materials Research,2009,100(2),128.30 Zaeem M A, Felicelli S D. Journal of Materials Science & Technology,2012,28(2),137.31 Montiel D, Liu L, Xiao L, Zhou Y, Provatas N. Acta Materialia,2012,60(16),5925.32 Amoorezaei M, Gurevich S, Provatas N. Acta Materialia,2012,60(2),657.33 Gurevich S, Amoorezaei M, Montiel D, Provatas N. Acta Materialia,2012,60(8),3287.34 Miu J M, Jing T, Liu B C. Acta Metallurgica Sinica,2008,44(4),483 (in Chinese).缪家明,荆涛,柳百成.金属学报,2008,44(4),483.35 Yuan X F, Ding Y T, Guo T B, et al. The Chinese Journal of Nonferrous Metals,2010,20(8),1474(in Chinese).袁训锋,丁雨田,郭廷彪,等.中国有色金属学报,2010,20(8),1474.36 Jing T, Shuai S S, Wang M Y. Acta Metallurgica Sinica,2016,52(10),127 9(in Chinese). 荆涛,帅三三,汪明月.金属学报,2016,52(10),1279.37 Wang M, Jing T, Liu B. Scripta Materialia,2009,61(8),777.38 Wang M Y, Xu Y J, Jing T, et al. Scripta Materialia,2012,67(7-8),629.39 Yao J P, Li X G, Long W Y, et al. The Chinese Journal of Nonferrous Metals,2014(1),36(in Chinese).尧军平,李翔光,龙文元,等.中国有色金属学报,2014(1),36.40 Yao J P, Li X G, Long W Y, et al. Rare Metal Materials and Enginee-ring,2014,43(1),97(in Chinese).尧军平,李翔光,龙文元,等.稀有金属材料与工程,2014,43(1),97.41 Yao J P, Li X G, Long W Y, et al. The Chinese Journal of Nonferrous Metals,2014(2),302(in Chinese).尧军平,李翔光,龙文元,等.中国有色金属学报,2014(2),302.42 Yuan X F, Yang Y, Li C, et al. China Foundry Machinery & Technology,2014(1),35(in Chinese).袁训锋,杨燕,李春,等.中国铸造装备与技术,2014(1),35.43 Yang M, Xiong S M, Guo Z. Acta Materialia,2015,92,8.44 Yang M, Xiong S M, Guo Z. Acta Materialia,2016,112,261.45 Liss K, Garbe U, Li H, et al. Advanced Engineering Materials,2010,11(8),637.46 Chen L Q, Yang W. Physical Review B Condensed Matter,1994,50(21),15752.47 Fan D, Chen L Q. Acta Materialia,1997,45(2),611.48 Haataja S S M. Physical Review B Condensed Matter,2007,76(9),094109.49 Suwa Y, Saito Y, Onodera H. Materials Science & Engineering A,2007,457(1-2),132.50 Takaki T, Yamanaka A, Higa Y, et al. Journal of Computer-Aided Materials Design,2007,14(1),75.51 Wang M T, Zong Y P, Wang G. The Chinese Journal of Nonferrous Metals,2009,19(9),1555(in Chinese).王明涛,宗亚平,王刚.中国有色金属学报,2009,19(9),1555.52 Zong Y P, Wang M T, Guo W. Acta Physica Sinica,2009,58(s1),161(in Chinese).宗亚平,王明涛,郭巍.物理学报,2009,58(s1),161.53 Gao Y J, Luo Z R, Hu X Y, et al. Acta Metallurgica Sinica,2010,46(10),1161(in Chinese).高英俊,罗志荣,胡项英,等.金属学报,2010,46(10),1161.54 Zhang X G, Zong Y P, Wang M T, et al. Acta Physica Sinica,2011,60(6),755(in Chinese). 张宪刚,宗亚平,王明涛,等.物理学报,2011,60(6),755.55 Zhang X G, Zong Y P, Wu Y. Acta Physica Sinica,2012,61(8),467(in Chinese).张宪刚,宗亚平,吴艳.物理学报,2012,61(8),467.56 Wu Y, Zong B Y, Zhang X G, et al. Metallurgical & Materials Transactions A Physical Metallurgy & Materials Science,2013,44(3),1599.57 Yan W, Zong Y, Jin J. Science China Materiasls,2016,59(5),355.58 Li M, Zhang R J, Allison J. In: Magnesium Technology. Warrendale,2010,pp.62359 Han G M, Han Z Q, AlanA Luo, et al. Acta Metallurgica Sinica,2013,49(3),277(in Chinese).韩国民,韩志强,AlanA Luo,等.金属学报,2013,49(3),277.60 Kim S G, Kim W T, Suzuki T. Physical Review E,1999,60(6),7186.61 Hu S Y, Murray J, Weiland H, et al. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2007,31(2),303.62 Hu J. Sustainable evolutionary algorithms and scalable evolutionary synthesis of dynamic systems. Ph.D. Thesis,Michigan State University, USA,2004.63 Zhou N, Shen C, Wagner F X, et al. Acta Materialia,2010,58(20),6685.64 Huang W. High performance network i/o in virtual machines over modern interconnects, Ohio State University, USA,2008.65 Minamoto S, Nomoto S, Hamaya A, et al. ISIJ International,2010,50(12),1914.66 Narita K, Koyama T, Tsukada Y. Materials Transactions,2013,54(5),661.67 Gao Y, Liu H, Shi R, et al. Acta Materialia,2012,60(12),4819.68 Liu H, Gao Y, Liu J Z, et al. Acta Materialia,2013,61(2),453.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[6] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[7] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[8] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[9] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[10] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[13] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[14] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[15] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed