Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1526-1534    https://doi.org/10.11896/cldb.18010063
  金属与金属基复合材料 |
超细晶镁合金的研究现状及展望
彭鹏1, 汤爱涛1,2, 佘加1, 周世博1, 潘复生1,2
1 重庆大学材料科学与工程学院,重庆 400045
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Ultrafine Grained Magnesium Alloys Research:Status Quo and Future Directions
PENG Peng1, TANG Aitao1,2, SHE Jia1, ZHOU Shibo1, PAN Fusheng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 2440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁及其合金具有低密度、高比强度、高导热性、高阻尼性以及良好的电磁屏蔽性能等优点,成为最具应用前景的结构材料之一。随着环保问题的日益突出,轻量化和节能减排变得日趋重要,对具有低密度、高性能和可回收再生产等特性的结构材料提出了大量且迫切的需求,这对镁合金的发展和应用提供了广阔的前景,但目前镁合金特别是变形镁合金还没能大规模工业化应用,还有问题需要解决。
绝对强度较低、塑性较差等是影响变形镁合金应用的主要瓶颈。在材料传统的四种强化理论中,析出强化、加工硬化等可以显著提高变形镁合金的绝对强度,但同时会损害其塑性;固溶强化一般只能提高强度,降低塑性,在镁合金中虽存在一些能够同时提升强度和塑性的固溶元素,但该类元素较少,且对强度和塑性的提升效果也十分有限,还有待进一步研究发展;而晶粒细化是目前最有效的能同时提高材料强度和塑性的方法,当晶粒细化至数个微米量级时(超细晶),材料的强度和塑性会得到极大提升。在钢铁材料中的超细晶钢,就是利用超细晶组织(一般认为超细晶组织的目标是将晶粒尺寸从传统的几十微米细化至1~2 μm)使钢铁材料的综合力学性能翻一番。同时,晶粒超细化也是高性能镁合金的研究重点之一。近期相关研究表明,超细晶镁合金拥有良好的强度和塑性,甚至还具有室温超塑性。目前常用于制备超细晶镁合金的方法主要有两种:剧烈变形法和中低温变形法。其中剧烈变形法主要采用等通道挤压、高压扭转、累积叠轧、多向锻造、粉末冶金等工艺方法来实现晶粒超细晶化,已有一定的发展历史,具有较深的研究基础;而中低温变形法是近年来新兴的一种制备超细晶镁合金的方法,同样能够成功制备出平均晶粒尺寸约为1 μm的超细晶镁合金材料,该方法具备工业化应用的潜力。此外,通过剧烈变形法和中低温变形法制备的不同合金成分的超细晶镁合金材料性能差异较大,因此合金的成分设计在两种制备超细晶镁合金的方法中也具有至关重要的作用。总地来说,通过设计不同的合金成分,改进制备工艺,准确调控变形过程中的再结晶行为,制备出组织良好、性能优异的镁合金材料已成为发展超细晶镁合金的重要方向。
因此,本文综述了目前超细晶镁合金的研究现状及主流的制备方法的优缺点,并分析了超细晶镁合金的制备方法和合金设计对组织和性能的影响,最后对超细晶镁合金的发展方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭鹏
汤爱涛
佘加
周世博
潘复生
关键词:  镁合金  超细晶  晶粒细化  合金设计    
Abstract: Magnesium and its alloys have become one of the most promising structural materials, thanks to their superiority in low density, high specific strength, high thermal conductivity, high damping and good electromagnetic shielding performance. As the rising environmental problems, there is a increasingly pressing need for light-weight products, energy conservation and emission reduction. Especially, it has become an urgent and widespread demand for structural materials with low density, high performance and recyclable remanufacturing properties, which provides a broad prospect for the development and application of magnesium alloys. Nevertheless, magnesium alloys especially the wrought magnesium alloys haven’t achieved a large-scale industrial application yet, and still remain some issues to be solved.
The key bottlenecks that affecting the application of wrought magnesium alloys lie in their low absolute strength and poor plasticity. In the four traditional reinforcement theories, precipitation strengthening, processing hardening can significantly enhance the absolute strength, yet accompanied by further deterioration of plasticity. Generally, solution strengthening is an effective approach to enhance strength, but also do harm to the ductility. Few solid solution elements are found to simultaneously contribute to strength and ductility, and the improvement of solid solution elements on strength and ductility is not satisfactory as well, hence further studied and exploration are still needed. Currently, grain refinement has been proved to be the most effective means for improving both strength and plasticity. The strength and ductility of materials will be significant boosted when the grain size is refined to several microns. In ultra-fine grained steel, it is generally believed that the goal of ultra-fine grained structure is to refine the grain size from dozens of microns to achieve the fine structure of 1—2 μm. In iron and steel materials, the properties of mate-rials can be doubled by using ultrafine grained structure. Accordingly, grain refinement is also one of the focuses of high-performance magnesium alloys. Recent studies have shown that ultrafine grained magnesium alloys also possess favorable strength, plasticity and even low temperature super plasticity. At present, two approaches commonly used for preparing ultrafine grained magnesium alloys are severe deformation and medium-low temperature deformation. The former primarily employs techniques like equal channel extrusion, high pressure torsion, cumulative rolling, multidirectional forging and powder metallurgy to achieve ultra-fine crystallization of grains, which holds a development history and a relatively deep research foundation. The latter is an emerging approach for preparing ultrafine grained magnesium alloys. The ultrafine magnesium alloys with an average grain size about 1 μm can also be successfully obtained, exhibiting a great potential for industrial application. Besides, there are significant difference in the properties of ultrafine grained magnesium alloys with diverse alloy components prepared by severe deformation and medium-low temperature deformation. Therefore, the composition design of alloys also plays a crucial role in preparation of ultrafine grained magnesium alloys in anyone of the approaches. Generally speaking, the leading direction of research on ultrafine magnesium alloys focus on designing various alloy components, optimizing the preparation process, regulating the recrystallization behavior during deformation, and preparing ultrafine magnesium alloys with satisfactory microstructure and excellent performance.
In this paper, we review the current status and the preparation approaches of ultrafine grained magnesium alloys with their merits and drawbacks, and analyze the effect of preparation approach and alloy design on microstructure and properties of ultrafine grained magnesium alloys. Finally, we point out the development direction of ultrafine grained magnesium alloys in the future.
Key words:  magnesium alloys    ultrafine grained    grain refinement    alloy design
                    发布日期:  2019-05-08
ZTFLH:  TG146.2+2  
基金资助: 国家重点研发计划项目(2016YFB0301100);重庆市自然科学基金(cstc2017jcyjBX0040);重庆市研究生科研创新基金(CYB18005);国家自然科学基金(51531002;51474043)
通讯作者:  tat@cqu.edu.cn   
作者简介:  彭鹏,博士研究生,2012年毕业于成都理工大学,获得学士学位。2015年毕业于重庆大学,获得硕士学位。现为重庆大学在读博士研究生,在汤爱涛教授的指导下进行研究,主要研究领域为含Mn超细晶镁合金。汤爱涛,博士,教授,博士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。以镁合金、铝合金和复合材料为重点,主要从事材料数据库、材料的计算模拟以及高性能材料的研究。潘复生,男,汉族,1962年7月生,浙江省兰溪市人,工学博士,重庆大学材料学科教授,博士研究生导师,中国工程院院士。1977年参加工作,第十一届全国政协委员,国务院学位委员会学科评议组成员。历任重庆大学讲师、副研究员、系副主任、研究所所长、研究生院副院长、轻金属研究院院长等职。曾留学英国牛津大学、日本千叶大学和德国国家材料研究所。
引用本文:    
彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
PENG Peng, TANG Aitao, SHE Jia, ZHOU Shibo, PAN Fusheng. Ultrafine Grained Magnesium Alloys Research:Status Quo and Future Directions. Materials Reports, 2019, 33(9): 1526-1534.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010063  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1526
1 YOO M H. Metallurgical Transactions A,1981,12(3),409.
2 Zhang Z W, Wang J L, Zhang Q L, et al. Materials Review A: Review Papers,2017(1),116(in Chinese).
章震威,王军丽,张清龙,等.材料导报:综述篇,2017(1),116.
3Čížek J, Hruška P, Vlasák T, et al. Materials Science and Engineering: A,2017,704,181.
4 Del Valle J A, Rey P, Gesto D, et al. Materials Science and Enginee-ring: A,2015,628,198.
5 Edalati K, Masuda T, Arita M, et al. Scientific Reports,2017,7(1),2662.
6 Han F, Chen G, Liu H W, et al. Journal of Netshape Forming Enginee-ring,2017,9(2),7(in Chinese).
韩飞,陈刚,刘洪伟,等.精密成形工程,2017,9(2),40.
7 Jin C Y, Yin K, Shi W W, et al. Journal of Netshape Forming Enginee-ring,2017,9(3),40(in Chinese).
金朝阳,殷凯,史伟伟,等.精密成形工程,2017,9(3),19.
8 Zhang J, Cao F R. Journal of Netshape Forming Engineering,2016,8(5),152(in Chinese).
张坚,曹富荣.精密成形工程,2016,8(5),152.
9 Estrin Y, Vinogradov A. International Journal of Fatigue,2010,32(6),898.
10Faraji G, Yavari P, Aghdamifar S, et al. Journal of Materials Science and Technology,2014,30(2),134.
11Gärtnerová V, Singh A, Jäger A, et al. Journal of Alloys and Compounds,2017,726,651.
12Li J L, Wu D, Yang Q B, et al. Journal of Alloys and Compounds,2016,672,27.
13She J, Pan F S, Guo W, et al. Materials & Design,2016,90,7.
14Singh A, Osawa Y, Somekawa H, et al. Scripta Materialia,2011,64(7),661.
15Toth L S, Gu C. Materials Characterization,2014,92,1.
16Valiev R Z, Estrin Y, Horita Z, et al. Jom,2016,68(4),1216.
17Valiev R Z, Langdon T G. Progress in Materials Science,2006,51(7),881.
18Liu H, Ju J, Bai J, et al. Metals,2017,7(10),398.
19Song D, Ma A B, Jiang J H, et al. Corrosion Science,2011,53(1),362.
20Yu Z, Tang A, Wang Q, et al. Materials Science and Engineering: A,2015,648,202.
21Cheng S, Spencer J A, Milligan W W. Acta Materialia,2003,51(15),4505.
22Greer J R, De Hosson J T M. Progress in Materials Science,2011,56(6),654.
23Mukai T, Watanabe H, Higashi K. Materials Science and Technology,2013,16(11-12),1314.
24Minárik P, Vesely J, Král R, et al. Materials Science and Engineering: A,2017,708,193.
25Anne G, Ramesh M R, Shivananda Nayaka H, et al. Journal of Materials Engineering and Performance,2017,26(4),1726.
26Wang B, Liu C, Gao Y, et al. Materials Science and Engineering: A,2017,702,22.
27Xu C, Zheng M, Xu S, et al. Materials Science and Engineering: A,2015,643,137.
28Somekawa H, Hosokawa H, Watanabe H, et al. Materials Science and Engineering: A,2003,339(1-2),328.
29Torbati-Sarraf S A, Alizadeh R, Mahmudi R, et al. Materials Science and Engineering: A,2017,708,432.
30Mostaed E, Fabrizi A, Dellasega D, et al. Materials Characterization,2015,107,70.
31Figueiredo R B, Langdon T G. Materials Science and Engineering: A,2009,501(1-2),105.
32Kandalam S, Sabat R K, Bibhanshu N, et al. Materials Science and Engineering: A,2017,687,85.
33Matsunoshita H, Edalati K, Furui M, et al. Materials Science and Engineering: A,2015,640,443.
34Horita Z, Matsubara K, Makii K, et al. Scripta Materialia,2002,47,255.
35Somekawa H, Singh A, Mukai T, et al. Philosophical Magazine,2016,96(25),2671.
36Kim Y S, Kim W J. Materials Science and Engineering: A,2016,677,332.
37Chai F, Zhang D, Zhang W, et al. Materials Science and Engineering: A,2014,590,80.
38Watanabe H, Mukai T, Kohzu M, et al. Acta Materialia,1999,47(14),3753.
39Miyahara Y, Horita Z, Langdon T G. Materials Science and Engineering: A,2006,420(1-2),240.
40Wu X, Liu Y. Scripta Materialia,2002,46,269.
41Watanabe H, Tsutsui H, Mukai T, et al. International Journal of Plasticity,2001,17,387.
42Wu W, Tan H. Materials Research Innovations,2015,19(sup5),S5.
43Kai M, Horita Z, Langdon T G. Materials Science and Engineering: A,2008,488(1-2),117.
44Fata A, Faraji G, Mashhadi M M, et al. Materials Science and Enginee-ring: A,2016,674,9.
45Kang Z, Zhou L, Zhang J. Materials Science and Engineering: A,2015,633,59.
46Xu S Y, Li J Z, Ding Y. Journal of Materials and Metallurgy,2015(4),305(in Chinese).
许斯洋,李继忠,丁桦.材料与冶金学报,2015(4),305.
47Wang H, Liu M P, Tang K, et al. Materials Review A:Review Papers,2016(8),119(in Chinese).
王辉,刘满平,唐恺,等.材料导报:综述篇,2016(8),119
48Bridgman P W. Proceedings of the American Academy of Arts and Sciences,1937,71(9),387.
49Su J. Severe plastic flow behavior and constitutive theory of ultra-fine grained copper. Ph.D. Thesis, Northwestern Polytechnical University, China,2015(in Chinese).
苏静.超细晶Cu的剧塑性流变行为及本构理论.博士学位论文,西北工业大学,2015.
50Cui Y J, Wang C, Yu Z T, et al. Materials Review A: Review Papers,2016(8),151(in Chinese).
崔亚军,王昌,于振涛,等.材料导报:综述篇,2016(8),151.
51Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia,1999,47(2),579.
52Liu J W, Chen Z H, Chen D, et al. Journal of Aeronautical Materials,2012,32(1),11(in Chinese).
刘俊伟,陈振华,陈鼎,等.航空材料学报,2012,32(1),11.
53Zeng Z, Nie J F, Xu S W, et al. Nature Communications,2017,8(1),972.
54Yu H, Park S H, You B S. Materials Science and Engineering: A,2014,610,445.
55Robson J D, Paa-Rai C. Acta Materialia,2015,95,10.
56Basu I, Al-Samman T. Acta Materialia,2014,67,116.
57Gopi K R, Shivananda Nayaka H, Sahu S. Arabian Journal for Science and Engineering,2017,42(11),4635.
58Jiang J, Wu J, Ni S, et al. Materials Science and Engineering: A,2018,712,478.
59Nakata T, Xu C, Ajima R, et al. Materials Science and Engineering: A,2018,712,12.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[4] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[5] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[6] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[7] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[8] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[9] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[10] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[11] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[12] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[13] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[14] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[15] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed