Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2565-2571    https://doi.org/10.11896/cldb.18060119
  金属与金属基复合材料 |
Sr在耐热镁合金中的应用及研究进展
张娜1,程仁菊1,董含武1,刘文君2,詹俊1,蒋斌1,2,潘复生1,2
1.重庆市科学技术研究院,重庆 401123
2.重庆大学材料科学与工程学院,重庆 400030
Application and Research Progress of Strontium in Heat-resistant Magnesium Alloy
ZHANG Na1, CHENG Renju1, DONG Hanwu1, LIU Wenjun2, ZHAN Jun1, JIANG Bin1,2, PAN Fusheng1,2
1.Chongqing Academy of Science and Technology, Chongqing 401123
2.College of Materials Science and Engineering, Chongqing University, Chongqing 400030
下载:  全 文 ( PDF ) ( 1749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金是国际上公认的最有潜力的轻量化材料之一,被誉为“21世纪绿色工程金属”。它的推广应用解决了我国关键装备和重大工程的轻量化问题,缓解了我国日益严峻的环境和能源危机。然而,镁合金强度偏低,尤其是高温强度和抗蠕变性能差,严重阻碍了其发展与应用。因此,常在镁合金中加入不同的合金元素来改善镁合金的微观组织和高温性能,其中价格低廉的碱土金属Sr就是一种提高镁合金高温性能的合金化元素。Sr可以提高镁固溶体的熔点,其在镁合金中扩散缓慢且具有较低的密度,因而在耐热镁合金中得到了广泛的应用。近年来,研究者们主要从Sr元素的成分优化及Sr与其他合金元素的合理搭配方面不断尝试,并取得了丰硕的成果,在适当添加元素Sr及/或其他元素后,耐热镁合金的高温性能得到了改善。
目前较常用的镁合金系列有Mg-Al系、Mg-Zn系和Mg-RE系等。对Mg-Al系而言,向镁合金中加入碱土元素Sr,除了起到细晶强化的作用外,还可以在晶界处形成新相,该相具有高的熔点和热稳定性,能阻止高温下镁合金晶粒的长大和晶界的滑移,起到晶界强化的作用,从而明显提高镁合金的高温性能和抗蠕变能力。对Mg-Zn系而言,在铸态Mg-Zn合金中添加Sr元素后,合金的强度均获得一定程度的提高,但是塑性较低。因此研究者越来越关注Sr元素对变形镁合金性能的影响。在变形Mg-Zn合金中添加适量碱土元素Sr,除了起到细晶强化作用外,晶界处会析出Mg-Zn-Sr三元相,其具有更高的热稳定性,能够钉扎晶界,起到晶界强化的作用,提高镁合金的高温力学性能,同时使变形镁合金的塑性也得到提高。对Mg-RE系而言,加入适量的碱土元素Sr,不仅可降低实验成本,而且对合金的组织有很好的细化效果,第二相含量增加并且在晶界处分布更加均匀,使镁合金的高温力学性能得到提高。
本文归纳了碱土元素Sr在Mg-Al系、Mg-Zn系和Mg-RE系耐热镁合金中的应用情况以及研究进展,分析讨论了碱土元素Sr改善镁合金高温性能的强化机制,指出了含Sr耐热镁合金目前存在的问题,并对其今后的发展方向进行了展望,为提高耐热镁合金的高温性能提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张娜
程仁菊
董含武
刘文君
詹俊
蒋斌
潘复生
关键词:  Sr  镁合金  耐热  强化机制  晶粒细化  固溶度  晶界强化    
Abstract: Magnesium alloys are recognized as one of the most promising lightweight materials in the world. They are known as “green engineering metal in the 21st century”. Its application can solve the lightweight problem of key equipment and major projects and alleviate the increasingly severe environmental and energy crisis. However, the low strength of magnesium alloys, especially the poor performance in high temperature strength and creep deformation resistance, has seriously hindered its development. Therefore, alloying elements could also affect the deformation modes and the final texture either by dissolving in the Mg matrix or forming various precipitates. Among them, low-cost alkaline earth metal Sr is an alloying element which can improve the high temperature properties of magnesium alloys. Sr can improve the melting point of magnesium solid solution, diffuse slowly and has low density in magnesium alloys. It has been widely used in heat-resistant magnesium alloys. In recent years, researchers have been trying to optimize the Sr composition and its reasonable combination with other alloying elements, and have achieved fruitful results. The high temperature properties of heat-resistant magnesium alloys have been improved by adding Sr and/or other elements.
At present, the more commonly used magnesium alloys are Mg-Al, Mg-Zn and Mg-RE. For Mg-Al system, adding alkaline earth element Sr can form a new phase at grain boundary besides fine grain strengthening. The phase has high melting point and thermal stability, which can prevent grain growth and grain boundary slip at high temperature and play the role of grain boundary strengthening, thus significantly improving the high temperature properties and creep resistance of magnesium alloys. For Mg-Zn system, the strength of as-cast Mg-Zn alloys increases to a certain extent by adding Sr element, but the plasticity is low. Therefore, researchers pay more and more attention to the effect of Sr on the properties of wrought magnesium alloys. In addition to fine grain strengthening, Mg-Zn-Sr ternary phase precipitates at grain boundary after adding appropriate amount of Sr in deformed Mg-Zn alloys. It has higher thermal stability and can pin grain boundaries, play the role of grain boundary strengthening, improve the high temperature mechanical properties of magnesium alloys, and improve the plasticity of wrought magnesium alloys. For the Mg-RE system, the proper addition of alkaline earth element Sr not only reduces the cost of the experiment, but also has a good refinement effect on the structure of the alloy. The content of the second phase increases and they are distributed more uniform at grain boundaries, which improve the high temperature mechanical properties of magnesium alloys.
In this paper, the application and research progress of alkaline earth element Sr in Mg-Al, Mg-Zn and Mg-RE heat-resistant magnesium alloys are summarized. The strengthening mechanism of alkaline earth element Sr to improve the high temperature properties of magnesium alloys is discussed. The existing problems of Sr-containing heat-resistant magnesium alloys are pointed out, and the future development is prospected. It provides reference for improving high temperature performance of heat-resistant magnesium alloys.
Key words:  strontium    magnesium alloy    heat resistance    strengthening mechanisms    grain refining    solid solubility    grain boundary strengthening
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG146.2  
基金资助: 重庆市重点产业共性关键技术创新专项项目(cstc2017zdcy-zdzxX0006);国家重点研发项目(2016YFB0301100);.国家青年科学基金项目(51504052);重庆市基本科研业务费项目(2017cstc-jbky-00102);重庆市科研院所绩效激励引导专项项目(cstc2018jxjl0192);重庆市技术创新与应用示范重大主题专项项目(cstc2018jszx-cyzdx0082)
引用本文:    
张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
ZHANG Na, CHENG Renju, DONG Hanwu, LIU Wenjun, ZHAN Jun, JIANG Bin, PAN Fusheng. Application and Research Progress of Strontium in Heat-resistant Magnesium Alloy. Materials Reports, 2019, 33(15): 2565-2571.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060119  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2565
[1] Poddar P, Kamaraj A, Murugesan A P, et al. Journal of Magnesium & Alloys,2017,5(3),348.
[2] Stjohn D H, Easton M A, Qian M, et al. Metallurgical & Materials Transactions A,2013,44(7),2935.
[3] Bi Y, Yang M B, Zou J, et al. Journal of Chongqing University of Technology (Natural Science),2017,31(12),63(in Chinese).
毕媛,杨明波,邹静,等.重庆理工大学学报(自然科学),2017,31(12),63.
[4] You S, Huang Y, Kainer K U, et al. Journal of Magnesium & Alloys,2017,5(3),239.
[5] Bai J, Sun Y S, Xue F, et al. Scripta Materialia,2006,55(12),1163.
[6] Wu L, Pan F S, Yang M B, et al. Journal of Materials Science,2013,48(16),5456.
[7] Cheng R J, Pan F S, Jiang S, et al. Progress in Natural Science: Mate-rials International,2013,23(1),7.
[8] Wu L, Pan F S, Yang M B, et al. Journal of Chongqing University,2014,37(3),1.
[9] Wu L, Pan F S, Yang M B, et al. Transactions of Nonferrous Metals So-ciety of China,2011,21(4),784.
[10] Chen Y, Gao J J, Song Y, et al. Materials Science & Engineering A,2016,671,127.
[11] Zhang Y C, Yang L, Dai J, et al. Materials Science & Engineering A,2014,610(29),309.
[12] Wang W D, Han J J, Yang X, et al. Materials Science & Engineering B,2016,214,26.
[13] Sani S A, Ebrahimi G R, Rashid A R K. Journal of Magnesium & Alloys,2016,4(2),104.
[14] Feng Z X, Pan F S, Shi Q N, et al. Journal of Functional Materials,2014,45(7),07061.
[15] Bai J, Sun Y S, Xue F, et al. Materials Science & Engineering A,2012,531(1),130.
[16] Hirai K, Somekawa H, Takigawa Y, et al. Materials Science & Enginee-ring A,2005,403(1),276.
[17] Zhang D D, Zhang D P, Bu F Q, et al. Materials Science & Engineering A,2017,693,51.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[7] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[8] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[9] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[10] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[11] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[12] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[13] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[14] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[15] 张 勇,李佩桓,贾崇林,王 涛,李鑫旭,李 阳. 变形高温合金纯净熔炼设备及工艺研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1496-1506.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed