Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1615-1618    https://doi.org/10.11896/cldb.18040015
  无机金属及其复合材料 |
质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料
陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬
郑州大学物理工程学院,郑州450001
PrBa0.5Sr0.5Cu2O6-δ as Composite Cathode for Proton-conducting Solid Oxide Fuel Cells
CHEN Leihang, SU Jinrui, HE Hao, ZHANG Zongzhen, CAI Bin
School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 11123KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用柠檬酸盐燃烧法制备了无钴双钙钛矿氧化物PrBa0.5Sr0.5Cu2O6-δ(PBSC)粉体,探究其作为质子导体固体氧化物燃料电池(H-SOFCs)阴极材料的可行性。研究了它与质子导体电解质BaZr0.1Ce0.7Y0.2O3-δ(BZCY)之间的化学相容性,分析了单相阴极PBSC、复合阴极PBSC-BZCY与电解质之间的热匹配性,并测试了单电池的电化学性能。结果发现,以PBSC为阴极、NiO-BZCY为阳极、BZCY为电解质的单电池在750 ℃时的最大功率密度为230 mW·cm-2,表明PBSC可作为H-SOFCs的阴极材料。而以PBSC-BZCY为阴极的单电池在750 ℃时的最大功率密度高达669 mW·cm-2。复合阴极电池性能的大幅提高主要与阴极反应从单相阴极/电解质界面扩展到复合阴极电池的整个阴极区域,大幅降低电池电阻有关。PBSC-BZCY复合阴极在H-SOFCs中的应用具有较好的前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈雷行
苏金瑞
何豪
张宗镇
蔡彬
关键词:  固体氧化物燃料电池  复合阴极  质子导体电解质  PrBa0.5Sr0.5Cu2O6-δ    
Abstract: Cobalt-free double perovskite PrBa0.5Sr0.5Cu2O6-δ(PBSC) powders were prepared using a citric acid-nitrate gel combustion process and stu-dies were performed to investigate the possibility of PBSC working as cathode for proton-conducting solid oxide fuel cells (H-SOFCs). The chemical compatibility with proton conductor BaZr0.1Ce0.7Y0.2O3-δ (BZCY) and thermal matching between the single-phase cathode PBSC, composite cathode PBSC-BZCY and the electrolyte were investigated. Electrochemical properties of H-SOFCs with PBSC or PBSC-BZCY cathodes were studied. Results show that for H-SOFCs constructed with PBSC as cathode, BZCY as electrolyte and NiO-BZCY as anode support, the peak power density is 230 mW·cm-2 at 750 ℃, indicating that PBSC could be a candidate for cathode of H-SOFCs; while for single cell constructed with PBSC-BZCY as cathode, the peak power density is 669 mW·cm-2 at 750 ℃. The significant improvement on the performance of single cells with composite cathode should be mainly attributed to the large decrease in resistance resulted from the extended reaction area as the whole cathode for composite cathode cells comparing with that of PBSC/electrolyte interface for single phase cathode cells. The results indicate the good prospects for PBSC-BZCY composite cathode in H-SOFCs application.
Key words:  solid oxide fuel cell    composite cathode    proton-conducting electrolyte    PrBa0.5Sr0.5Cu2O6-δ
                    发布日期:  2019-05-16
ZTFLH:  O611.3  
基金资助: 国家自然科学基金(51371160)
通讯作者:  jrsu@zzu.edu.cn   
作者简介:  陈雷行,郑州大学硕士研究生。2018年7月获得郑州大学凝聚态专业硕士学位。研究方向是质子导体固体氧化物燃料电池。苏金瑞,郑州大学物理工程学院,副教授。1999年7月毕业于中国科学院固体物理研究所。研究领域是功能氧化物和固体氧化物燃料电池。在国内外重要期刊发表文章20多篇。
引用本文:    
陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
CHEN Leihang, SU Jinrui, HE Hao, ZHANG Zongzhen, CAI Bin. PrBa0.5Sr0.5Cu2O6-δ as Composite Cathode for Proton-conducting Solid Oxide Fuel Cells. Materials Reports, 2019, 33(10): 1615-1618.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040015  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1615
1 Ding Z L, Yang Z J, Zhao D M, et al. Journal of Alloys and Compounds, 2013, 550, 204.
2 Bi L, Fabbri E, Sun Z Q, et al. Solid State Ionics,2011, 196(1), 59.
3 Fabbri E, Depifanio A, Dibartolomeo E, et al. Solid State Ionics, 2008, 179(15-16), 558.
4 Tao Z, Hou G, Zhang Q, et al. Fuel Cells, 2016, 16(2), 263.
5 Sun W P, Fang S M, Yan L T, et al. Journal of the Electrochemical So-ciety, 2011, 158(11), B1432.
6 Zhao F,Wang S W, Brinkman K, et al. Journal of Power Sources, 2010, 195(17), 5468.
7 Shao Q, Ge W J, Lu X Y, et al.Ceramics International, 2015, 41(5), 6687.
8 Sun W P, Yan L T, Lin B, et al. Journal of Power Sources, 2010, 195(10). 3155.
9 Yang Z J, Wang W B, Xiao J, et al. Journal of Power Sources, 2012, 204, 89.
10 Mao X B, Wang W B, Ma G L.Ceramics International, 2015, 41(8),10276.
11 Wang Z H, Liu M F, Sun W P, et al.Electrochemistry Communications, 2013, 27,19.
12 Meng X W. An investigation on the performance of cathode and electrolyte materials for intermediate-temperature solid oxide fuel cells. Ph.D. Thesis,Jilin University, China,2016 (in Chinese).
孟祥伟.中温固体氧化物燃料电池阴极和电解质材料的性能研究.博士学位论文,吉林大学,2016.
13 Sun W P, Zhu Z W, Jiang Y Z, et al. International Journal of Hydrogen Energy, 2011, 36(16), 9956.
14 He B B, Zhang L, Zhang Y X, et al. Journal of Power Sources, 2015, 287, 170.
15 Zhang X L, Qiu Y E, Jin F, et al. Journal of Power Sources, 2013, 241, 654.
16 Ling Y H, Yu J, Lin B, et al. Journal of Power Sources, 2011, 196(5), 2631.
17 Sun W P, Yan L T, Shi Z, et al. Journal of Power Sources, 2010, 195(15), 4727.
18 Chen X H, Tao Z T, Hou G H, et al. Electrochimica Acta, 2015, 165,142.
19 Zhu Z W, Tao Z T, Bi L, et al. Materials Research Bulletin, 2010, 45(11), 1771.
20 Wang S L, Feng Y, Wang D S.Ceramics International, 2014, 40(4), 6359.
21 Lu X Y, Chen Y H, Ding Y Z, et al. International Journal of Hydrogen Energy, 2012, 37(10),8630.
22 Tsipis E V, Kharton V V. Journal of Solid State Electrochemistry, 2011, 15(5),1007.
23 Zhu W X, Lü Z, Li S Y, et al. Journal of Alloys and Compounds, 2008, 465(1-2), 274.
24 Nian Q, Zhao L, He B B, et al. Journal of Alloys and Compounds, 2010, 492(1-2), 291.
[1] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[2] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[3] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[4] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed