Please wait a minute...
材料导报  2018, Vol. 32 Issue (3): 337-356    https://doi.org/10.11896/j.issn.1005-023X.2018.03.001
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述
周嵬1,2,3,王习习1,2,3,朱印龙1,2,3,戴洁1,2,3,朱艳萍1,2,3,邵宗平1,2,3
1 国家“江苏先进生物与化学制造”协同创新中心,南京 210009;
2 南京工业大学化工学院,南京 210009
3 南京工业大学材料化学工程国家重点实验室,南京 210009
A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells
Wei ZHOU1,2,3,Xixi WANG1,2,3,Yinlong ZHU1,2,3,Jie DAI1,2,3,Yanping ZHU1,2,3,Zongping SHAO1,2,3
1 Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210009
2 College of Chemical Engineering, Nanjing Tech University, Nanjing 210009
3 State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009
下载:  全 文 ( PDF ) ( 3856KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

  在21世纪的今天,由石油、煤炭等化石资源的过度开发与使用所引发的能源和环境问题日趋严重,开发经济、高效的能源转换与存储装置已成为新时代的研究主题。金属-空气电池和中低温固体氧化物燃料电池,作为高效的能源转换与存储装置,可以实现化学能向电能的高效转换,具有效率高、环境友好、成本低的显著优点,在过去十几年内受到了研究者的广泛关注,取得了惊人的成果。但与此同时,人们在研究中发现阴极(正极)缓慢的氧还原和氧析出反应速率极大地降低了电池转换效率,增加了应用成本,在很大程度上制约了金属-空气电池和中低温固体氧化物燃料电池的商业化发展和应用。钴基催化剂作为一种高效阴极材料,相比贵金属成本较低,且具有混合离子-电子导电性,可以有效降低极化电阻,对阴极氧还原和氧析出反应显示出高催化活性,近年来吸引了国内外学者极大的研究兴趣。

  对于金属-空气电池,虽然钴基催化剂如钴氧化物、尖晶石型氧化物、钙钛矿型氧化物等材料能够显著地提高金属-空气电池的电容量和循环性能,并且降低充电电压,有效降低极化,但是其催化活性和稳定性有待提高,催化机理和活性位点也需要进一步明确和探究;对于中低温固体氧化物燃料电池,钴基催化剂包括La1-xSrxCoO3-δ、La1-xSrxCo1-yFeyO3-δ、Ba1-xSrxCoyFe1-yO3-δ和钴基双钙钛矿等材料可以大大降低阴极极化电阻和面积比电阻,提高功率密度,但是相对其他催化剂,热膨胀系数普遍较高,稳定性也较差。

  为了进一步提高钴基催化剂应用在金属-空气电池和中低温固体氧化物燃料电池中的催化活性,研究者采用了掺杂其他金属元素、与其他物质组成复合阴极材料以及贵金属修饰等方法,在很大程度上提高了这两种电池的性能。

  本文简要介绍了金属-空气电池和中低温固体氧化物燃料电池的结构、工作原理,并在此基础上着重评述了近年来面向这两种能源转换与存储器件的,包括钴氧化物、钙钛矿型氧化物、尖晶石型氧化物和双钙钛矿氧化物等在内的各种钴基电催化剂的制取、改性和性能研究探索与成果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周嵬
王习习
朱印龙
戴洁
朱艳萍
邵宗平
关键词:  金属-空气电池  中低温固体氧化物燃料电池  钴基催化剂  钴氧化物  尖晶石型氧化物  钙钛矿型氧化物  钴基双钙钛矿    
Abstract: 

The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and urged the development of highly-efficient and cost-effective energy conversion and storage devices to become the research topic of this new era. Among many candidates of energy conversion and storage devices, metal-air batteries and intermediate-low temperature solid oxide fuel cells can efficiently convert chemical energy into electric energy, and enjoy the advantages of low cost, high efficiency and environmental friendliness. Hence, they have provoked intensive and fruitful research endeavors with amazing achievements over the past decade. However, the sluggish kinetics of the oxygen reduction and evolution reactions greatly reduces the energy conversion efficiency, and consequently increases the application cost and severely hinders the commercialization of these two devices. Cobalt-based electrocatalysts, as highly efficient cathode materials with lower cost than noble metals, feature mixed ionic and electronic conductivity which can effectively reduce polarization and contribute to high catalytic activity for oxygen reduction and evolution reactions, and thereby have been holding growing interest recently.

 For metal-air batteries, cobalt-based electrocatalysts such as simple oxides, spinel oxides, perovskite oxides, and others can significantly improve the discharge capacity and cycle life, and simultaneously, lower the charge voltage and polarization. On the other hand, the catalytic activity and stability need to be further enhanced, and the catalytic mechanisms and active sites deserve further rational exploration and ascertainment. Similarly, cobalt-based electrocatalysts including La1-xSrxCoO3-δ, La1-xSrxCo1-yFeyO3-δ, Ba1-xSrxCoyFe1-yO3-δ and cobalt-based double perovskites show evident efficacy in reducing the cathode polarization resistance and area specific resistance as well as increasing the power density, while nonetheless sustaining a generally higher thermal expansion coefficient and a rather poor stability compared to some other competitors.

 To further improve the catalytic performance of cobalt-based electrocatalysts for metal-air batteries and intermediate-low tempe-rature solid oxide fuel cells, researchers have developed many useful and productive methods, exemplified by metal elements doping, composite cathode materials preparation, and noble metals decoration.

 This review provides a brief introduction of the structure and working principle of metal-air batteries and intermediate-low temperature solid oxide fuel cells, and a vivid description upon the latest attempts and achievements for the fabrication, modification and performance of the rich variety of cobalt-based electrocatalysts, mainly including simple oxides, perovskites oxides, spinel oxides and double perovskites.

Key words:  metal-air battery    intermediate-low temperature solid oxide fuel cell    cobalt-based electrocatalyst    cobalt oxide    spinel oxide    perovskite oxide    cobalt-based double perovskite
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB383  
  TM911.41  
基金资助: 国家自然科学基金(21576135)
作者简介:  周嵬:男,1982年生,教授,研究方向主要包括固体氧化物燃料电池;质子交换膜燃料电池;ORR/OER/HER电催化剂;钙钛矿型材料在能源与环境方向的应用 E-mail: zhouwei1982@njtech.edu.cn
王习习:女,1993年生,硕士研究生,研究方向为低温氧催化E-mail: 1007128144@qq.com
引用本文:    
周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells. Materials Reports, 2018, 32(3): 337-356.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.001  或          http://www.mater-rep.com/CN/Y2018/V32/I3/337
20180806171717  基于双功能催化剂的可充电金属-空气电池及其工作原理示意图<br />
20180806171949  固体氧化物燃料电池的工作原理示意图
20180806172340  氧还原过程的三种氧分子吸附方式:(a)侧基式; (b)端基式; (c)桥基式<br />
20180806172417  模拟计算得到的Co3O4表面负载的Li2O2的分解反应机制<br />
20180806172528  (a)以SP、Co3O4 NWs/SP或Co3O4 NPs/SP为正极的相同容量Li-O2电池的首次放电充电曲线;(b)利用SP、Co3O4 NWs/SP或Co3O4 NPs/SP正极组装成的Li-O2电池的首次全放电曲线<br />
1 Tan P, Liu M, Shao Z , et al. Recent advances in perovskite oxides as electrode materials for nonaqueous lithium-oxygen batteries[J]. Advanced Energy Materials, 2017: 1602674.
2 Zhang J, Zhao Z, Xia Z , et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nano, 2015,10(5):444.
3 Zheng M B, Qiu D F, Pang H , et al. The progress of studies of li-thium-air batteries[J].Science & Technology Review,2011(14):67(in Chinese).
3 郑明波, 邱旦峰, 庞欢 , 等. 锂-空气电池研究进展[J].科技导报,2011(14):67.
4 Li Y Y, Wang L, He X M , et al. Research progress of cathode catalyst for lithium-air battery[J]. Chinese Battery Industry, 2014,19(3):163(in Chinese).
4 李月艳, 王莉, 何向明 , 等. 锂-空气电池正极催化剂研究进展[J]. 电池工业, 2014,19(3):163.
5 Zhou G . Preparation and electrochemical performance of transition metal oxide catalyst for lithium air battery[D]. Changsha:Central South University, 2013(in Chinese).
5 周耿 . 锂空气电池过渡金属氧化物催化剂的制备及电化学性能研究[D]. 长沙:中南大学, 2013.
6 Cao R, Lee J S, Liu M , et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012,2(7):816.
7 Zhu M J, Yuan Z S, Sang L , et al. Research progress of metal-air battery[J]. Chinese Journal of Power Sources, 2012,136(12):1953(in Chinese).
7 朱明骏, 袁振善, 桑林 , 等. 金属/空气电池的研究进展[J]. 电源技术, 2012,136(12):1953.
8 Lee D U, Xu P, Cano Z P , et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. Journal of Materials Chemistry A, 2016,4(19):7107.
9 Gao Z, Mogni L V, Miller E C , et al. A perspective on low-tempe-rature solid oxide fuel cells[J]. Energy & Environmental Science, 2016,9(5):1602.
10 Chen Y, Zhou W, Ding D , et al. Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements[J]. Advanced Energy Materials, 2015,5(18):1500537.
11 Jiang Z, Xia C, Chen F . Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochimica Acta, 2010,55(11):3595.
12 Sunarso J, Hashim S S, Zhu N , et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Progress in Energy and Combustion Science, 2017,61(Supp.C):57.
13 Duan C, Tong J, Shang M , et al. Readily processed protonic cera-mic fuel cells with high performance at low temperatures[J]. Science, 2015,349(6254):1321.
14 Zhang Y, Knibbe R, Sunarso J , et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃[J]. Advanced Materials, 2017,29:1700132.
15 Zhou W, Ran R, Shao Z . Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review[J]. Journal of Power Sources, 2009,192(2):231.
16 Park S, Shao Y, Liu J , et al. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective[J]. Energy & Environmental Science, 2012,5(11):9331.
17 Zhao H . Preparation of titanium oxides supported catalysts and study on electrochemical performance of air electrode[D]. Hohhot:Inner Mongolian University, 2013(in Chinese).
17 赵辉 . 钛氧化物载体催化剂的制备及空气电极电化学性能的研究[D]. 呼和浩特:内蒙古大学, 2013.
18 Queiroz A C , Lima F H B. Electrocatalytic activity and stability of Co and Mn-based oxides for the oxygen reduction reaction in alkaline electrolyte[J]. Journal of Electroanalytical Chemistry, 2013,707:142.
19 Storm M M, Overgaard M, Younesi R , et al. Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide[J]. Carbon, 2015,85:233.
20 Lim B, Jiang M, Camargo P H , et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009,324(5932):1302.
21 Su C, Yang T, Zhou W , et al. Pt/C-LiCoO2 composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Journal of Materials Che-mistry A, 2016,4(12):4516.
22 Su C, Wang W, Chen Y , et al. SrCo0.9Ti0.1O3-δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance[J]. ACS Applied Materials & Interfaces, 2015,7(32):17663.
23 Zhu Y, Zhou W, Chen Z-G , et al. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution[J]. Angewandte Chemie International Edition, 2015,54(13):3897.
24 Wang Y, Zhang L M, Hu T J . Progress in oxygen reduction reaction electrocatalysts for metal-air batteries[J].Acta Chimica Sinica,2015(4):316(in Chinese).
24 王瀛, 张丽敏, 胡天军 . 金属空气电池阴极氧还原催化剂研究进展[J].化学学报,2015(4):316.
25 Yu J, Sunarso J, Zhu Y , et al. Activity and stability of ruddlesden-popper-type Lan+1NinO3n+1 (n=1, 2, 3, and infinity) electrocatalysts for oxygen reduction and evolution reactions in alkaline media[J]. Chemistry-a European Journal, 2016,22(8):2719.
26 Lin Y, Zhou W, Sunarso J , et al. Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3-δ as a cathode for proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012,37(1):484.
27 Zhu Y, Zhou W, Sunarso J , et al. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution[J]. Advanced Functional Materials, 2016,26(32):5862.
28 Chen G, Sunarso J, Zhu Y , et al. Highly active carbon/α-MnO2 hybrid oxygen reduction reaction electrocatalysts[J]. Chemelectrochem, 2016,3(11):1760.
29 Wang D D . Preparation of spinel type metal oxides and their applications in oxygen electrode[D]. Beijing:Beijing University of Chemical Technology, 2013(in Chinese).
29 王登登 . 尖晶石型金属氧化物的制备及其在氧电极中的应用[D]. 北京:北京化工大学, 2013.
30 Cui Y, Wen Z, Sun S , et al. Mesoporous Co3O4 with different porosities as catalysts for the lithium-oxygen cell[J]. Solid State Ionics, 2012,225:598.
31 Cui Y, Wen Z, Liu Y . A free-standing-type design for cathodes of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011,4(11):4727.
32 Kim K S, Park Y J . Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries[J]. Nanoscale Research Letters, 2012,7(1):47.
33 Débart A, Bao J, Armstrong G , et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007,174(2):1177.
34 Zhu J, Ren X, Liu J , et al. Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li-O2 battery[J]. ACS Catalysis, 2015,5(1):73.
35 Liu Q, Jiang Y, Xu J , et al. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2batte-ries[J]. Nano Research, 2015,8(2):576.
36 Liang Y, Li Y, Wang H , et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Mate-rials, 2011,10(10):780.
37 Black R, Lee J H, Adams B , et al. The role of catalysts and pero-xide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013,125(1):410.
38 Yoon T H, Park Y J . Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery[J]. Nanoscale Research Letters, 2012,7(1):28.
39 Song M J, Kim I T, Kim Y B , et al. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries[J]. Electrochimica Acta, 2015,182:289.
40 Sun B, Liu H, Munroe P , et al. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries[J]. Nano Research, 2012,5(7):460.
41 Liang Y, Wang H, Diao P , et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes[J]. Journal of the American Chemical Society, 2012,134(38):15849.
42 Leng X, Ding X, Hu J , et al. In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance[J]. Electrochimica Acta, 2016,190:276.
43 Lin S L . Preparation, characterization and study of perovskite-type composite oxides for the photo-electro-catalutic activity[D]. Nanjing:Nanjing University of Science and Technology, 2005(in Chinese).
43 林生岭 . 钙钛矿复合氧化物的制备、表征及其光电催化活性研究[D]. 南京:南京理工大学, 2005.
44 Kalubarme R S, Kim Y-H, Park C-J. Perovskite composite bifunctional catalyst for rechargeable lithium-oxygen batteries [C]∥Mee-ting Abstracts for 223rd ECS Meeting.Pennington,New Jersey,U.S.:The Electrochemical Society, 2013: 260.
45 Lee J J, Oh M Y, Nahm K S . Effect of ball milling on electrocataly-tic activity of perovskite La0. 6Sr0. 4CoO3-δ applied for lithium air battery[J]. Journal of The Electrochemical Society, 2016,163(2):A244.
46 Li P, Zhang J, Yu Q , et al. One-dimensional porous La0.5Sr0.5-CoO2.91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Electrochimica Acta, 2015,165:78.
47 Liu G, Chen H, Xia L , et al. Hierarchical mesoporous/macroporous perovskite La0. 5Sr0. 5CoO3-x nanotubes: A bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries[J]. ACS Applied Materials & Interfaces, 2015,7(40):22478.
48 Wang Q, Xue Y, Sun S , et al. La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries[J]. Electrochimica Acta, 2017,254:14.
49 Shimizu Y, Matsuda H, Miura N , et al. Bi-functional oxygen electrode using large surface area perovskite-type oxide catalyst for rechargeable metal-air batteries[J]. Chemistry Letters, 1992,21(6):1033.
50 Shimizu Y, Uemura K, Matsuda H , et al. Bi-functional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air battery[J]. Journal of The Electrochemical Society, 1990,137(11):3430.
51 Ohkuma H, Uechi I, Imanishi N , et al. Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries[J]. Journal of Power Sources, 2013,223:319.
52 Zhao Y, Xu L, Mai L , et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batte-ries[J]. Proceedings of the National Academy of Sciences, 2012,109(48):19569.
53 Cheng J, Zhang M, Jiang Y , et al. Perovskite La0.6Sr0.4Co0.2Fe0.8-O3 as an effective electrocatalyst for non-aqueous lithium air batte-ries[J]. Electrochimica Acta, 2016,191:106.
54 Sun N, Liu H, Yu Z , et al. Mn-doped La0.6Sr0.4CoO3 perovskite catalysts with enhanced performances for non-aqueous electrolyte Li-O2 batteries[J]. RSC Advances, 2016,6(16):13522.
55 Wang P X, Shao L, Zhang N Q , et al. Mesoporous CuCo2O4 nano-particles as an efficient cathode catalyst for Li-O2 batteries[J]. Journal of Power Sources, 2016,325:506.
56 Zhang L, Zhang S, Zhang K , et al. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries[J]. Chemical Communications, 2013,49(34):3540.
57 Yuan X Z, Qu W, Zhang X , et al. Spinel NixCo2-xO4as a bifunctional air electrode for zinc air batteries[J]. ECS Transactions, 2013,45(29):105.
58 Mohamed S G, Tsai Y-Q, Chen C-J , et al. Ternary spinel MCo2O4 (M=Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries[J]. ACS Applied Materials & Interfaces, 2015,7(22):12038.
59 Li B, Feng J, Qian Y , et al. Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties[J]. Journal of Materials Chemistry A, 2015,3(19):10336.
60 Lee J S, Nam G, Sun J , et al. Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-Air battery[J]. Advanced Energy Materials, 2016,6(22):1601052.
61 Li N, Yan X, Zhang W , et al. Electrocatalytic activity of spinel-type oxides LiMn2-xCoxO4 with large specific surface areas for metal-air battery[J]. Journal of Power Sources, 1998,74(2):255.
62 Wang L, Zhao X, Lu Y , et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries[J]. Journal of The Electrochemical Society, 2011,158(12):A1379.
63 Liang Y, Wang H, Zhou J , et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2012,134(7):3517.
64 Wang H, Yang Y, Liang Y , et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen ca-thode catalyst[J]. Energy & Environmental Science, 2012,5(7):7931.
65 Liu R, Von Malotki C, Arnold L , et al. Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction[J]. Journal of the American Chemical Society, 2011,133(27):10372.
66 Wu J, Dou S, Shen A , et al. One-step hydrothermal synjournal of NiCo2S4-rGO as an efficient electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014,2(48):20990.
67 Chen Z, Choi J-Y, Wang H , et al. Highly durable and active non-precious air cathode catalyst for zinc air battery[J]. Journal of Power Sources, 2011,196(7):3673.
68 Liu Y, Jiang H, Zhu Y , et al. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions[J]. Journal of Materials Chemistry A, 2016,4(5):1694.
69 Ahn C-H, Okada T, Ishida M , et al. Electrochemical characteristic of based on carbon mixed with organic metal complex (Co (mqph)) in alkaline media Li-air battery[J]. Journal of Power Sources, 2016,307:474.
70 Sun C, Hui R, Roller J . Cathode materials for solid oxide fuel cells: A review[J]. Journal of Solid State Electrochemistry, 2010,14(7):1125.
71 Peng R, Wu T, Liu W , et al. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes[J]. Journal of Materials Chemistry, 2010,20(30):6218.
72 Shao Z P . Cathode materials for solid oxide fuel cells towards opera-ting at intermediate-to-low temperature range[J]. Progress in Chemistry, 2011,23(2-3):418(in Chinese).
72 邵宗平 . 中低温固体氧化物燃料电池阴极材料[J]. 化学进展, 2011,23(2-3):418.
73 Zhou W, Shao Z P, Ran R , et al. Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor[J]. Materials Research Bulletin, 2008,43(8-9):2248.
74 Zhou W, Ran R, Shao Z , et al. Barium-and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells[J]. Acta Materialia, 2008,56(12):2687.
75 Zhou W, Ran R, Shao Z , et al. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)(1-κ)Co0.8Fe0.2O3-δ(κ> 0) perovskite as a solid-oxide fuel cell cathode[J]. Journal of Power Sources, 2008,182(1):24.
76 Zhou W, Zhao M, Liang F , et al. High activity and durability of novel perovskite electrocatalysts for water oxidation[J]. Materials Horizons, 2015,2(5):495.
77 Ge L, Yang Y, Wang L , et al. High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reduction reaction[J]. Carbon, 2015,82:417.
78 Shao Z, Zhou W, Zhu Z . Advanced synjournal of materials for intermediate-temperature solid oxide fuel cells[J]. Progress in Materials Science, 2012,57(4):804.
79 Mizusaki J, Tabuchi J, Matsuura T , et al. Electrical conductivity and Seebeck coefficient of nonstoichiometric La1-xSrxCoO3-δ[J]. Journal of the Electrochemical Society, 1989,136(7):2082.
80 Mineshige A, Kobune M, Fujii S , et al. Metal-insulator transition and crystal structure of La1-xSrxCoO3 as functions of Sr-content, temperature, and oxygen partial pressure[J]. Journal of Solid State Chemistry, 1999,142(2):374.
81 Ralph J M, Rossignol C, Kumar R . Cathode materials for reduced-temperature SOFCs[J]. Journal of The Electrochemical Society, 2003,150(11):A1518.
82 Inagaki T, Miura K, Yoshida H , et al. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte: II. La(Sr)CoO3 cathode[J]. Journal of Power Sources, 2000,86(1):347.
83 Evans A, Martynczuk J, Stender D , et al. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δ cathodes[J]. Advanced Energy Materials, 2015,5(1):1400747.
84 Acu?a L M, Mu?oz F F, Fuentes R O . Correlation between structural, chemical, and electrochemical properties of La0.6Sr0.4CoO3-d nanopowders for application in intermediate temperature solid oxide fuel cells[J]. The Journal of Physical Chemistry C, 2016,120(36):20387.
85 Zeng R, Huang Y . Enhancing surface activity of La0.6Sr0.4CoO3-δ cathode by a simple infiltration process[J]. International Journal of Hydrogen Energy, 2017,42(10):7220.
86 Hwang J, Lee H, Yoon K J , et al. Study on the electrode reaction mechanism of pulsed-laser deposited thin-film La1-xSrxCoO3-δ (x=0.2. 0.4) cathodes[J]. Journal of the Electrochemical Society, 2012,159(10):F639.
87 Park J-S, Bae J, Hong S , et al. Superior La1-xSrxCoO3-δ ceramic electrode fabrication by MOCSD for low-temperature SOFC application[J]. Surface and Coatings Technology, 2017,311:157.
88 Gwon O, Yoo S, Shin J , et al. Optimization of La1-xSrxCoO3-δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties[J]. International Journal of Hydrogen Energy, 2014,39(35):20806.
89 Tao Y, Shao J, Wang W G , et al. Optimisation and evaluation of La0.6Sr0.4CoO3-δ cathode for intermediate temperature solid oxide fuel cells[J]. Fuel Cells, 2009,9(5):679.
90 Kim Y T, Shikazono N . Investigation of La0.6Sr0.4CoO3-δ-Gd0.1Ce0.9O2-δ composite cathodes with different volume ratios by three dimensional reconstruction[J]. Solid State Ionics, 2017,309:77.
91 Zhao F, Peng R, Xia C . A La0.6Sr0.4CoO3-δ-based electrode with high durability for intermediate temperature solid oxide fuel cells[J]. Materials Research Bulletin, 2008,43(2):370.
92 Matsuda M, Ihara K, Miyake M . Influences of Ga doping on lattice parameter, microstructure, thermal expansion coefficient and electrical conductivity of La0.6Sr0.4CoO3-y[J]. Solid State Ionics, 2004,172(1):57.
93 Lee K T, Manthiram A . Comparison of Ln0.6Sr0.4CoO3-δ (Ln=La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate tempe-rature solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2006,153(4):A794.
94 Teraoka Y, Zhang H M, Okamoto K , et al. Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides[J]. Materials Research Bulletin, 1988,23(1):51.
95 Stevenson J W, Armstrong T R, Carneim R D , et al. Electrochemical properties of mixed conducting perovskites La1-xMxCo1-y-FeyO3-δ (M=Sr, Ba, Ca)[J]. Journal of The Electrochemical Society, 1996,143(9):2722.
96 Steele B C H. Survey of materials selection for ceramic fuel cells II. Cathodes and anodes[J].Solid State Ionics,1996,86-88(Part 2):1223.
97 Sahibzada M, Benson S J, Rudkin R A , et al. Pd-promoted La0.6-Sr0.4Co0.2Fe0.8O3 cathodes[J].Solid State Ionics, 1998, 113- 115:285.
98 Han G D, Neoh K C, Bae K , et al. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer[J]. Journal of Power Sources, 2016,306:503.
99 Mani R, Gautam R, Banerjee S , et al. A study on La0.6Sr0.4Co0.3Fe0.8O3 (LSCF) cathode material prepared by gel combustion method for IT-SOFCs: Spectroscopic, electrochemical and microstructural analysis[J]. Asian Journal of Research in Chemistry, 2015,8(6):389.
100 Wang H, Yakal-Kremski K J, Yeh T, et al. Mechanisms of performance degradation of (La,Sr)(Co,Fe)O3-δ solid oxide fuel cell cathodes[J]. Journal of The Electrochemical Society, 2016,163(6):F581.
101 Liu Y, Cao Y, Yang S , et al. Effects of oxygen partial pressure on the performance stability of impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ-Sm0.2Ce0.8O2 cathodes of solid oxide fuel cells[J]. Fuel Processing Technology, 2015,135:203.
102 Kammer K . Studies of Fe-Co based perovskite cathodes with diffe-rent A-site cations[J]. Solid State Ionics, 2006,177(11):1047.
103 Chen K, Li N, Ai N , et al. Polarization-induced interface and Sr segregation of in situ assembled La0.6Sr0.4Co0.2Fe0.8O3-δ electrodes on Y2O3-ZrO2 electrolyte of solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2016,8(46):31729.
104 Wang W G, Mogensen M . High-performance lanthanum-ferrite-based cathode for SOFC[J]. Solid State Ionics, 2005,176(5):457.
105 Dusastre V, Kilner J A . Optimisation of composite cathodes for intermediate temperature SOFC applications[J]. Solid State Ionics, 1999,126(1):163.
106 Hua C-H, Chou C-C . Preparation of nanoscale composite LSCF/GDCS cathode materials by microwave sintering for intermediate-temperature SOFC applications[J]. Ceramics International, 2015,41(Supp.1):S708.
107 Xi X, Kondo A, Kozawa T , et al. LSCF-GDC composite particles for solid oxide fuel cells cathodes prepared by facile mechanical method[J]. Advanced Powder Technology, 2016,27(2):646.
108 Leng Y J, Chan S H, Jiang S P , et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction[J]. Solid State Ionics, 2004,170(1):9.
109 Jia C, Chen M, Han M . Performance and electrochemical analysis of solid oxide fuel cells based on LSCF-YSZ nano-electrode[J]. International Journal of Applied Ceramic Technology, 2017,14(5):1006.
110 Gao C, Liu Y, Xi K , et al. Improve the catalytic property of La0.6-Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes with CuO nanoparticles infiltration[J]. Electrochimica Acta, 2017,246:148.
111 Burnwal S K, Bharadwaj S, Kistaiah P . Review on MIEC cathode materials for solid oxide fuel cells[J]. Journal of Molecular and Engineering Materials, 2016,04(02):1630001.
112 Shao Z, Haile S M . A high-performance cathode for the next gene-ration of solid-oxide fuel cells[J]. Nature, 2004,431:170.
113 Wei B, Lü Z, Huang X , et al. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8-Fe0.2O3-δ(0.3≤x≤0.7)[J]. Journal of the European Ceramic Society, 2006,26(13):2827.
114 Chen Z, Ran R, Zhou W , et al. Assessment of Ba0.5Sr0.5Co1-y-FeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane[J]. Electrochimica Acta, 2007,52(25):7343.
115 Fisher C a J, Yoshiya M, Iwamoto Y , et al. Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A molecular dyna-mics study[J]. Solid State Ionics, 2007,177(39):3425.
116 Li S, Lü Z, Wei B , et al. A study of (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2-O3-δ as a cathode material for IT-SOFCs[J]. Journal of Alloys and Compounds, 2006,426(1):408.
117 Li S, Lü Z, Ai N , et al. Electrochemical performance of (Ba0.5-Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ as an intermediate temperature solid oxide fuel cell cathode[J]. Journal of Power Sources, 2007,165(1):97.
118 Li S, Lü Z, Huang X , et al. Electrical and thermal properties of (Ba0.5-Sr0.5)1-xSmxCo0.8Fe0.2O3-δ perovskite oxides[J]. Solid State Ionics, 2007,178(5):417.
119 Ding X, Kong X, Jiang J , et al. Characterization and electrochemical performance of (Ba0.6Sr0.4)1-xLaxCo0.6Fe0.4O3-δ (x=0, 0.1) cathode for intermediate temperature solid oxide fuel cells[J]. Materials Research Bulletin, 2010,45(9):1271.
120 Meng X, Meng B, Tan X , et al. Synjournal and properties of Ba0.5-Sr0.5(Co0.6Zr0.2)Fe0.2O3-δperovskite cathode material for intermediate temperature solid-oxide fuel cells[J]. Materials Research Bulletin, 2009,44(6):1293.
121 He Y, Fan L, Afzal M , et al. Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-δ as high performance cathode for low-temperature SOFCs[J]. Electrochimica Acta, 2016,191:223.
122 Popov M P, Starkov I A, Bychkov S F , et al. Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-δ functional properties by partial substitution of cobalt with tungsten[J]. Journal of Membrane Science, 2014,469(Supp.C):88.
123 Popov M P, Bychkov S F, Nemudry A P . Modification of mixed conducting Ba0.5Sr0.5Co0.8Fe0.2O3-δ by partial substitution of cobalt with tungsten[J]. Russian Journal of Electrochemistry, 2016,52(7):648.
124 Li J, Yang C, Liu M . High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3-δ as cathode[J]. Ceramics International, 2016,42(16):19397.
125 Zhou W, Shao Z, Ran R , et al. Ba0.5Sr0.5Co0.8Fe0.2O3-δ+LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources, 2007,168(2):330.
126 Lee S O, Lee D, Jung I , et al. Ceria interlayer-free Ba0.5Sr0.5Co0.8-Fe0.2O3-δ-Sc0.1Zr0.9O1.95composite cathode on zirconia based electrolyte for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013,38(22):9320.
127 Giuliano A, Carpanese M P, Panizza M , et al. Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ba0.5Sr0.5Co0.8Fe0.2O3-δ composite as cathode for solid oxide fuel cells[J]. Electrochimica Acta, 2017,240:258.
128 Wei B, Lü Z, Li S , et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2005,8(8):A428.
129 Mosia?ek M., K?dra A., Krzan M ., et al. Ba0.5Sr0.5Co0.8Fe0.2-O3-δ-La0.6Sr0.4Co0.8Fe0.2O3-δ composite cathode for solid oxide fuel cell[J]. Archives of Metallurgy and Materials, 2016,61(3):1483.
130 Wei F, Jiang J, Yu G , et al. BSCF based nanocomposite cathodes fabricated by ion-impregnating method for solid oxide fuel cells[J]. International Journal of Electrochemical Science, 2015,10:7159.
131 Kao W-X, Lee M-C, Lin T-N , et al. Fabrication and characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ-gadolinia-doped ceria cathode for an anode-supported solid-oxide fuel cell[J]. Journal of Power Sources, 2010,195(8):2220.
132 Meng G, Jiang C, Ma J , et al. Comparative study on the perfor-mance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007,173(1):189.
133 Li K, Wang X, Jia L , et al. High performance Ni-Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process[J]. International Journal of Hydrogen Energy, 2014,39(34):19747.
134 Ai N, Jiang S P, Lü Z , et al. Nanostructured (Ba,Sr)(Co,Fe)-O3-δ impregnated (La,Sr)MnO3 cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010,157(7):B1033.
135 Zhou W, Ran R, Shao Z , et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition[J]. Electrochimica Acta, 2008,53(13):4370.
136 Lin Y, Ran R, Shao Z . Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathodes for a proton conducting solid-oxide fuel cell[J]. International Journal of Hydrogen Energy, 2010,35(15):8281.
137 Chen Y, Wang F, Chen D , et al. Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction[J]. Journal of Power Sources, 2012,210(Supplement C):146.
138 Mosia?ek M, Dudek M, Michna A , et al. Composite cathode materials Ag-Ba0.5Sr0.5Co0.8Fe0.2O3 for solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2014,18(11):3011.
139 Kim J-H, Manthiram A . LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2008,155(4):B385.
140 Zhang K, Ge L, Ran R , et al. Synjournal, characterization and eva-luation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Materialia, 2008,56(17):4876.
141 Wang W, Peh T S, Chan S H , et al. Synjournal and characterization of LnBaCo2O5+δ layered perovskites as cathodes for intermediate-temperature solid oxide fuel cells[J]. ECS Transactions, 2009,25(2):2277.
142 Kim J H, Cassidy M , Irvine J T S, et al. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+δ (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC[J]. Journal of the Electrochemical Society, 2009,156(6):B682.
143 Che X, Shen Y, Li H , et al. Assessment of LnBaCo1.6Ni0.4O5+δ (Ln=Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources, 2013,222:288.
144 Chen D, Ran R, Shao Z . Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8-O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells[J]. Journal of Power Sources, 2010,195(21):7187.
145 Kim J H, Cassidy M , Irvine J T S, et al. Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell[J]. Chemistry of Materials, 2010,22(3):883.
146 Choi S, Yoo S, Kim J , et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa(0.5)Sr(0.5)-Co(2-x)Fe(x)O(5+δ)[J]. Scientific Reports, 2013,3:2426.
147 Munoz-Gil D, Perez-Coll D, Urones-Garrote E , et al. Influence of the synjournal conditions on the crystal structure and properties of GdBaCo2-xFexO5+δ oxides as air-electrodes for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2017,5(24):12550.
148 Anjum U, Khatoon N, Sardar M , et al. Nanoparticle synjournal and oxygen anion diffusion in double perovskite GdBaCo2-xFexO5+δ electrodes for SOFC[J]. ECS Transactions, 2016,72(7):111.
149 Jin F, Shen Y, Wang R , et al. Double-perovskite PrBaCo2/3Fe2/3-Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources, 2013,234:244.
150 Jo S H, Muralidharan P, Kim D K . Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3-O5+δ cathode on Ce1.9Gd0.1O1.95 electrolyte for IT-SOFCs[J]. Electrochemistry Communications, 2009,11(11):2085.
151 Lee T-H, Park K-Y, Kim N-I , et al. Robust NdBa0.5Sr0.5Co1.5-Fe0.5O5+δ cathode material and its degradation prevention operating logic for intermediate temperature-solid oxide fuel cells[J]. Journal of Power Sources, 2016,331:495.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[3] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[6] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[7] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[8] 李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
[9] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[10] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[11] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[12] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[13] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[14] 许乃才, 史丹丹, 黎四霞, 刘忠, 董亚萍, 李武. 利用吸附技术提取盐湖卤水中锂的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 116-121.
[15] 许乃才, 史丹丹, 党力, 洪天增, 董亚萍, 刘忠, 李武. CaO-Al2O3二元氧化物吸附剂的制备、表征及除氟性能研究*[J]. 《材料导报》期刊社, 2017, 31(16): 36-40.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed