Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 621-625    https://doi.org/10.11896/j.issn.1005-023X.2018.04.023
  材料研究 |
碳包覆氧化亚钴纳米颗粒的制备与性能研究
朱学良1, 2, 魏智强1, 2, 白军善2, 赵文华2, 冯旺军2, 姜金龙2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学理学院,兰州 730050
Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles
ZHU Xueliang1, 2, WEI Zhiqiang1, 2, BAI Junshan2, ZHAO Wenhua2, FENG Wangjun2, JIANG Jinlong2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直流电弧放电等离子体技术成功制备了碳包覆氧化亚钴纳米颗粒,并对样品的形貌、晶体结构、粒度、比表面积和孔结构采用高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、X射线能量色散光谱(XEDS)、拉曼散射光谱(Raman)和N2吸-脱附等测试手段进行了分析。HRTEM表明该方法制备的碳包覆氧化亚钴纳米颗粒具有典型的核壳结构,颗粒形貌主要为球形或椭球结构,粒度均匀,分散性良好,粒径分布在20~60 nm,平均粒径为40 nm,外壳碳层的厚度为5 nm。XRD证明样品的内核为面心立方结构的氧化亚钴纳米颗粒,外壳为碳层。XEDS图谱表明样品中主要存在Co、O和C元素的特征峰。Raman光谱说明样品中碳外包覆层的石墨化程度较低,发生了红移现象。样品的N2吸附-脱附等温曲线属Ⅳ型,BET比表面积为33 m2/g,BJH脱附累积总孔孔容和脱附平均孔径分别为0.078 cm3/g和11 nm。当量粒径为43 nm,与TEM和XRD测得的结果基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱学良
魏智强
白军善
赵文华
冯旺军
姜金龙
关键词:  碳包覆  氧化亚钴  粒度  比表面积  孔结构    
Abstract: Carbon-encapsulated CoO core-shell structure nanoparticles were successfully prepared by DC arc discharge plasma technique. The product was characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray energy dispersive spectrometry (XEDS). Raman spectroscopy and low-temperature N2 adsorption/desorption were employed to determine the morphology, crystal structure, specific area, and pore structure of the nanoparticles. HRTEM indicated that the carbon-encapsulated CoO nanoparticles prepared by this method possess typical core shell structure. The particle morphology exhibits spherical or ellipsoidal structure with uniform particle size and good dispersion. The particle size distribution is in the range of 20—60 nm, the average particle size is 40 nm, and the thickness of the shell carbon layer is about 5 nm. XRD studies demonstrate that the core of the particles is CoO with face-centered cubic structure CoO, and the outer shell is disordered carbon layer. XEDS spectra confirmed the presence of Co, O and C elements in the sample. Raman spectrum showed the low degree of graphite in the sample and the occurrence of red shift phenomenon. The N2 adsorption and desorption isotherm belongs to type Ⅳ, the BET specific surface area is 33 m2/g, the BJH desorption cumulative pore volume and desorption average pore size are 0.078 cm3/g and 11 nm, respectively. The equivalent particle size is 43 nm, which is consistent with the results measured by TEM and XRD.
Key words:  carbon encapsulation    cobalt (Ⅱ) oxide;    particle size    specific surface area    pore structure
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51261015); 甘肃省自然科学基金(1308RJZA238)
通讯作者:  魏智强:男,1973年生,博士,教授,主要研究方向为纳米材料 E-mail:zqwei7411@163.com   
作者简介:  朱学良:男,1992年生,硕士研究生,研究方向为纳米材料 E-mail:xueliangzac@126.com
引用本文:    
朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
ZHU Xueliang, WEI Zhiqiang, BAI Junshan, ZHAO Wenhua, FENG Wangjun, JIANG Jinlong. Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles. Materials Reports, 2018, 32(4): 621-625.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.023  或          https://www.mater-rep.com/CN/Y2018/V32/I4/621
1 Granata G, Yamaoka T, Pagnanelli F, et al. Study of the synthesis of copper nanoparticles: The role of capping and kinetic towards control of particle size and stability[J].Journal of Nanoparticle Research,2016,18(5):1.
2 Melaet G, Lindeman A E, Somorjai G A. Cobalt particle size effects in the fischer-tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica[J].Topics in Catalysis,2014,57(6):500.
3 Salman S A, Usami T, Kuroda K, et al. Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid[J].Journal of Nanotechnology,2014,2014(2014):525193.
4 Rana S B, Singh R P P, Arya S. Structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles[J].Journal of Materials Science Materials in Electronics,2017,28(3):2660.
5 Singh M, Dosanjh H S, Singh H. Surface modified spinel cobalt ferrite nanoparticles for cationic dye removal: Kinetics and thermodynamics studies[J].Journal of Water Process Engineering,2016,11:152.
6 Manteghi F, Kazemi S H, Peyvandipoor M, et al. Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors[J].RSC Advances,2015,5(93):76458.
7 Pramanik A, Maiti S, Sreemany M, et al. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life[J].Journal of Nanoparticle Research,2016,18(4):1.
8 Sonia, Thukral A K. Effects of macro-and nano-cobalt oxide particles on barley seedlings and remediation of cobalt chloride toxicity using sodium hypochlorite[J].International Journal of Plant & Soil Science,2014,3(6):751.
9 Khan A, Rashid A, Younas R, et al. A chemical reduction approach to the synthesis of copper nanoparticles[J].International Nano Letters,2016,6(1):21.
10 Varshney S, Ohlan A, Jain V K, et al. Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding[J].Materials Chemistry & Physics,2014,143(2):806.
11 Allaedini G, Tasirin S M. Effect of PH on cobalt oxide nano particles prepared by co-precipitation method[J].Australian Journal of Basic & Applied Sciences,2014,8:243.
12 Ni J F, Gao L J, Lu L. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques[J].Journal of Power Sources,2013,221(1):35.
13 ?nder Metin, Can H, endil K, et al. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes[J].Journal of Colloid & Interface Science,2017,498:378.
14 Hong N N, Song L, Wang B B, et al. Fabrication of graphene supported carbon-coating cobalt and carbon nanoshells for adsorption of toxic gases and smoke[J].Journal of Applied Polymer Science,2014,131(13):178.
15 Zhan H J, Liu M, Ma X T, et al. Enhanced catalytic performance of Co-Sn composite oxide in styrene epoxidation with air[J].Kinetics and Catalysis,2015,56(6):712.
16 Zhang W, Tan Y Y, Gao Y L, et al. Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material[J].Journal of Solid State Electrochemistry,2015,19(2):593.
17 Abadelwahad S M, Bukhzam A F, Mekhemer G A H. A study of the precursor variation on the surface characterization of supported cobalt oxide catalyst[J].American Journal of Materials Science,2015,5(2A):1.
18 Du Tao, Zhang Hongdi, Fan Tongxiang. Recent progress on graphene/metal composites[J].Materials Review A:Review Papers,2015,29(2):121(in Chinese).
独涛,张洪迪,范同祥.石墨烯/金属复合材料的研究进展[J].材料导报:综述篇,2015,29(2):121.
19 Zhang Yanpeng, Li Zheng, Lu Jing, et al. Recent progress on graphene/metal composites[J].Materials Review A:Review Papers,2016,30(6):121(in Chinese).
张彦鹏,李争,卢静,等.纳米颗粒自组装SERS基底的发展及应用进展[J].材料导报:综述篇,2016,30(6):121.
20 Lin T, Ye C, Yang G D, et al. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B[J].Applied Surface Science,2014,314(24):746.
21 Gu D, Jia C J, Weidenthaler C, et al. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide[J].Journal of the American Chemical Society,2015,137(35):11407.
22 Zhang H, Ling T, Du X W. Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production[J].Chemistry of Materials,2015,27(1):352.
23 Wei Z Q, Xia T D, Bai L F, et al. Efficient preparation for Ni na-nopowders by anodic arc plasma[J].Materials Letters,2006,60(6):766.
[1] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[2] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[3] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[4] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[5] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[6] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[7] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[8] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[9] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[10] 王衍行, 杨鹏慧, 李现梓, 韩韬, 祖成奎. 物理钢化玻璃的研究进展[J]. 材料导报, 2024, 38(11): 23020199-8.
[11] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[12] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[13] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[14] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[15] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed