Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 621-625    https://doi.org/10.11896/j.issn.1005-023X.2018.04.023
  材料研究 |
碳包覆氧化亚钴纳米颗粒的制备与性能研究
朱学良1, 2, 魏智强1, 2, 白军善2, 赵文华2, 冯旺军2, 姜金龙2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学理学院,兰州 730050
Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles
ZHU Xueliang1, 2, WEI Zhiqiang1, 2, BAI Junshan2, ZHAO Wenhua2, FENG Wangjun2, JIANG Jinlong2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直流电弧放电等离子体技术成功制备了碳包覆氧化亚钴纳米颗粒,并对样品的形貌、晶体结构、粒度、比表面积和孔结构采用高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、X射线能量色散光谱(XEDS)、拉曼散射光谱(Raman)和N2吸-脱附等测试手段进行了分析。HRTEM表明该方法制备的碳包覆氧化亚钴纳米颗粒具有典型的核壳结构,颗粒形貌主要为球形或椭球结构,粒度均匀,分散性良好,粒径分布在20~60 nm,平均粒径为40 nm,外壳碳层的厚度为5 nm。XRD证明样品的内核为面心立方结构的氧化亚钴纳米颗粒,外壳为碳层。XEDS图谱表明样品中主要存在Co、O和C元素的特征峰。Raman光谱说明样品中碳外包覆层的石墨化程度较低,发生了红移现象。样品的N2吸附-脱附等温曲线属Ⅳ型,BET比表面积为33 m2/g,BJH脱附累积总孔孔容和脱附平均孔径分别为0.078 cm3/g和11 nm。当量粒径为43 nm,与TEM和XRD测得的结果基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱学良
魏智强
白军善
赵文华
冯旺军
姜金龙
关键词:  碳包覆  氧化亚钴  粒度  比表面积  孔结构    
Abstract: Carbon-encapsulated CoO core-shell structure nanoparticles were successfully prepared by DC arc discharge plasma technique. The product was characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray energy dispersive spectrometry (XEDS). Raman spectroscopy and low-temperature N2 adsorption/desorption were employed to determine the morphology, crystal structure, specific area, and pore structure of the nanoparticles. HRTEM indicated that the carbon-encapsulated CoO nanoparticles prepared by this method possess typical core shell structure. The particle morphology exhibits spherical or ellipsoidal structure with uniform particle size and good dispersion. The particle size distribution is in the range of 20—60 nm, the average particle size is 40 nm, and the thickness of the shell carbon layer is about 5 nm. XRD studies demonstrate that the core of the particles is CoO with face-centered cubic structure CoO, and the outer shell is disordered carbon layer. XEDS spectra confirmed the presence of Co, O and C elements in the sample. Raman spectrum showed the low degree of graphite in the sample and the occurrence of red shift phenomenon. The N2 adsorption and desorption isotherm belongs to type Ⅳ, the BET specific surface area is 33 m2/g, the BJH desorption cumulative pore volume and desorption average pore size are 0.078 cm3/g and 11 nm, respectively. The equivalent particle size is 43 nm, which is consistent with the results measured by TEM and XRD.
Key words:  carbon encapsulation    cobalt (Ⅱ) oxide;    particle size    specific surface area    pore structure
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51261015); 甘肃省自然科学基金(1308RJZA238)
通讯作者:  魏智强:男,1973年生,博士,教授,主要研究方向为纳米材料 E-mail:zqwei7411@163.com   
作者简介:  朱学良:男,1992年生,硕士研究生,研究方向为纳米材料 E-mail:xueliangzac@126.com
引用本文:    
朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
ZHU Xueliang, WEI Zhiqiang, BAI Junshan, ZHAO Wenhua, FENG Wangjun, JIANG Jinlong. Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles. Materials Reports, 2018, 32(4): 621-625.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.023  或          http://www.mater-rep.com/CN/Y2018/V32/I4/621
1 Granata G, Yamaoka T, Pagnanelli F, et al. Study of the synthesis of copper nanoparticles: The role of capping and kinetic towards control of particle size and stability[J].Journal of Nanoparticle Research,2016,18(5):1.
2 Melaet G, Lindeman A E, Somorjai G A. Cobalt particle size effects in the fischer-tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica[J].Topics in Catalysis,2014,57(6):500.
3 Salman S A, Usami T, Kuroda K, et al. Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid[J].Journal of Nanotechnology,2014,2014(2014):525193.
4 Rana S B, Singh R P P, Arya S. Structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles[J].Journal of Materials Science Materials in Electronics,2017,28(3):2660.
5 Singh M, Dosanjh H S, Singh H. Surface modified spinel cobalt ferrite nanoparticles for cationic dye removal: Kinetics and thermodynamics studies[J].Journal of Water Process Engineering,2016,11:152.
6 Manteghi F, Kazemi S H, Peyvandipoor M, et al. Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors[J].RSC Advances,2015,5(93):76458.
7 Pramanik A, Maiti S, Sreemany M, et al. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life[J].Journal of Nanoparticle Research,2016,18(4):1.
8 Sonia, Thukral A K. Effects of macro-and nano-cobalt oxide particles on barley seedlings and remediation of cobalt chloride toxicity using sodium hypochlorite[J].International Journal of Plant & Soil Science,2014,3(6):751.
9 Khan A, Rashid A, Younas R, et al. A chemical reduction approach to the synthesis of copper nanoparticles[J].International Nano Letters,2016,6(1):21.
10 Varshney S, Ohlan A, Jain V K, et al. Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding[J].Materials Chemistry & Physics,2014,143(2):806.
11 Allaedini G, Tasirin S M. Effect of PH on cobalt oxide nano particles prepared by co-precipitation method[J].Australian Journal of Basic & Applied Sciences,2014,8:243.
12 Ni J F, Gao L J, Lu L. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques[J].Journal of Power Sources,2013,221(1):35.
13 ?nder Metin, Can H, endil K, et al. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes[J].Journal of Colloid & Interface Science,2017,498:378.
14 Hong N N, Song L, Wang B B, et al. Fabrication of graphene supported carbon-coating cobalt and carbon nanoshells for adsorption of toxic gases and smoke[J].Journal of Applied Polymer Science,2014,131(13):178.
15 Zhan H J, Liu M, Ma X T, et al. Enhanced catalytic performance of Co-Sn composite oxide in styrene epoxidation with air[J].Kinetics and Catalysis,2015,56(6):712.
16 Zhang W, Tan Y Y, Gao Y L, et al. Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material[J].Journal of Solid State Electrochemistry,2015,19(2):593.
17 Abadelwahad S M, Bukhzam A F, Mekhemer G A H. A study of the precursor variation on the surface characterization of supported cobalt oxide catalyst[J].American Journal of Materials Science,2015,5(2A):1.
18 Du Tao, Zhang Hongdi, Fan Tongxiang. Recent progress on graphene/metal composites[J].Materials Review A:Review Papers,2015,29(2):121(in Chinese).
独涛,张洪迪,范同祥.石墨烯/金属复合材料的研究进展[J].材料导报:综述篇,2015,29(2):121.
19 Zhang Yanpeng, Li Zheng, Lu Jing, et al. Recent progress on graphene/metal composites[J].Materials Review A:Review Papers,2016,30(6):121(in Chinese).
张彦鹏,李争,卢静,等.纳米颗粒自组装SERS基底的发展及应用进展[J].材料导报:综述篇,2016,30(6):121.
20 Lin T, Ye C, Yang G D, et al. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B[J].Applied Surface Science,2014,314(24):746.
21 Gu D, Jia C J, Weidenthaler C, et al. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide[J].Journal of the American Chemical Society,2015,137(35):11407.
22 Zhang H, Ling T, Du X W. Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production[J].Chemistry of Materials,2015,27(1):352.
23 Wei Z Q, Xia T D, Bai L F, et al. Efficient preparation for Ni na-nopowders by anodic arc plasma[J].Materials Letters,2006,60(6):766.
[1] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[2] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[5] 袁腾, 梁斌, 黄家健, 杨卓鸿, 邵庆辉. 壳层厚度对中空苯丙乳胶粒结构形态及遮盖性的影响[J]. 材料导报, 2019, 33(4): 724-728.
[6] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[7] 王勇, 谢帅, 乔丽英, 刘月, 赵川. 二水磷酸氢钙包覆镁粉的组织及其在NaCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(4): 533-538.
[8] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[9] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[10] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[11] 左迎峰, 肖俊华, 李萍, 王健, 李贤军, 吴义强. 水灰比对镁系无机轻质材料性能的影响规律[J]. 《材料导报》期刊社, 2018, 32(14): 2370-2375.
[12] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[13] 李亚军,王学重. 集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统[J]. 《材料导报》期刊社, 2018, 32(10): 1721-1729.
[14] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[15] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed