Effects of Curing Temperature on Properties and Microstructure of Red Mud-based Road Cementitious Material
HAN Ruikai1,2,3, CHEN Yuxin1,2,3, ZHANG Jian1,2, LI Zhaofeng1,2,3,*, WANG Yansheng1,2
1 Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China 2 State Key Laboratory for Tunnel Engineering, Jinan 250002, China 3 School of Qilu Transportation, Shandong University, Jinan 250002, China
Abstract: Red mud-based road cementitious material can be used instead of cement in the construction of semi-rigid road bases. Shandong Province has a warm temperate monsoon climate with significant fluctuations in temperature throughout the year. Different months result in different curing temperatures for the cementitious material. This work focused on the influencing law and underlying mechanism of variation of curing temperature on the compressive strength and microstructure of red mud-based road cementitious material. The curing temperatures applied in the experiment was changed amongst 1 ℃, 4 ℃, 10 ℃, 16 ℃, 20 ℃, 25 ℃, and 28 ℃, which was determined based on the actual temperature data in Shandong(Jinan) from 2006 to 2023. The instruments used in strength test and microstructure observation were a universal testing machine and a 1H low-field nuclear magnetic resonance analyzer, and the means utilized for revealing the underlying mechanism of curing temperature variation-induced performance evolution included X-ray diffractometry, thermogravimetry, and ICP-OES. It could be concluded that an increase in curing temperature would promote the development of compressive strength of red mud-based road cementitious material. The cementitious material cured at 28 ℃ achieved a 7-day compressive strength of 21.15 MPa, 67.41% higher than that achieved under the curing temperature of 1 ℃. When the material was cured at a temperature of ≥20 ℃, its whole-curing-stage strength development rate was higher than 1 MPa/d. Increasing the curing temperature would result in optimized pore structure distribution of the stone body. After 7 days of curing, with the increase of curing temperature, the proportions of gel pores and transition pores in the stone bodies increased from 37.82% to higher than 80% and the proportion of pores decreased from 62.18% to about 15%. The main hydration product of red mud-based road cementitious material is(C, N)-A-S-H gel, which plays an important role for strength development. Higher curing temperatures are conducive to the dissolution of Si/Al elements in red mud, thus increasing the production of (C, N)-A-S-H gel. For the application of red mud-based cementitious material to road engineering, it is recommended not to perform road construction when monthly average temperature is below 10 ℃, and to extend the curing time to accelerate strength development when monthly average temperature is within 10—20 ℃.
通讯作者:
*李召峰,山东大学齐鲁交通学院教授、博士研究生导师。2008年济南大学材料科学与工程学院本科毕业,2011年济南大学材料科学与工程专业硕士毕业,2016年山东大学岩土工程专业博士毕业。目前主要从事固废资源化利用、隧道与地下工程灾害防控理论与技术、环境岩土工程材料与化学等方面的研究工作。发表论文60余篇,包括Construction and Building Materials、Journal of Cleaner Production、Journal of Hazardous Materials等。lizf@sdu.edu.cn
韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
HAN Ruikai, CHEN Yuxin, ZHANG Jian, LI Zhaofeng, WANG Yansheng. Effects of Curing Temperature on Properties and Microstructure of Red Mud-based Road Cementitious Material. Materials Reports, 2024, 38(22): 24060144-8.
1 Duan H B, Chen Y, Cai J X, et al. Acta Scientiae Circumstantiae, 2023, 43(6), 1(in Chinese). 段华波, 陈瑛, 蔡俊雄, 等. 环境科学学报, 2023, 43(6), 1. 2 Liu F Q, Qiu D F, Gu S Q, et al. Chinese Journal of Engineering, 2022, 44(4), 561(in Chinese). 刘风琴, 邱定蕃, 顾松青, 等. 工程科学学报, 2022, 44(4), 561. 3 Wang S, Jin H, Deng Y, et al. Journal of Cleaner Production, 2021, 289, 125136. 4 Mukiza E, Zhang L, Liu X, et al. Resources, Conservation and Recycling, 2019, 141, 187. 5 Ma M J, Huang Z, Wang J Y, et al. Science China Earth Sciences, 2024, 67(6), 2086(in Chinese). 马铭婧, 黄子, 王娇月, 等. 中国科学:地球科学, 2024, 54(6), 2086. 6 Xue S G, Zhu M X, Yang X W, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(10), 3421(in Chinese). 薛生国, 朱铭星, 杨兴旺, 等. 中国有色金属学报, 2023, 33(10), 3421. 7 Liu X M, Tang B W, Yin H F, et al. Chinese Journal of Engineering, 2018, 40(4), 438(in Chinese). 刘晓明, 唐彬文, 尹海峰, 等. 工程科学学报, 2018, 40(4), 438. 8 Zhang Y, Liu X, Xu Y, et al. Construction and Building Materials, 2019, 220, 364. 9 Ma L L, Zhang X, Liu F, et al. Journal of Building Materials, 2023, 26(7), 762(in Chinese). 马璐璐, 张翛, 刘芳, 等. 建筑材料学报, 2023, 26(7), 762. 10 Zhang J, Li S, Li Z. Journal of Cleaner Production, 2020, 273, 122972. 11 Xun X W, Xiao Y X, Zhang B F, et al. Multipurpose Utilization of Mineral Resources, 2023(6), 83(in Chinese). 荀小伟, 肖亚雄, 张佰发, 等. 矿产综合利用, 2023(6), 83. 12 Yin H J, Zhang Z Q, Wang W. Journal of the Hebei Academy of Sciences, 2023, 40(4), 47(in Chinese). 尹海姣, 张振卿, 王伟. 河北省科学院学报, 2023, 40(4), 47. 13 You Hao. Experimental study on durability of red mud-based cementitious material stabilized base. Master's Thesis, Shandong University, China, 2023(in Chinese). 游浩. 赤泥基胶凝材料稳定碎石耐久性试验研究. 硕士学位论文, 山东大学, 2023. 14 Li J, Xie X, Li B Q, et al. Conservation and Utilization of Mineral Resources, 2020, 40(6), 141(in Chinese). 黎洁, 谢贤, 李博琦, 等. 矿产保护与利用, 2020, 40(6), 141. 15 Zhang J M, Chu X H. Engineering Mechanics, DOI:11.2595.O3.20240426.1510.002(in Chinese). 张佳铭, 楚锡华, 余敏. 工程力学, DOI:11.2595.O3.20240426.1510.002. 16 Li W Y, Yin J H, Wang J, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 2992(in Chinese). 李文郁, 尹健昊, 王健, 等. 硅酸盐学报, 2022, 50(11), 2992. 17 Ma D D, Ma Y Q, Huang K, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(3), 572(in Chinese). 马冬冬, 马芹永, 黄坤, 等. 岩土工程学报, 2021, 43(3), 572. 18 Guo X L, Shi H S, Xia M. Journal of the Chinese Ceramic Society, 2015, 43(2), 138(in Chinese). 郭晓潞, 施惠生, 夏明. 硅酸盐学报, 2015, 43(2), 138. 19 Zhang J. Composition design, hydration mechanism and performance control of grouting material prepared by red mud and multi-source solid waste. Ph. D. Thesis, Shandong University, China, 2021(in Chinese). 张健. 赤泥协同多源固废制备注浆材料组成设计、水化机理与性能调控. 博士学位论文, 山东大学, 2021. 20 Shi H S, Hu W P, Guo X L, et al. Journal of the Chinese Ceramic Society, 2015, 43(2), 174(in Chinese). 施惠生, 胡文佩, 郭晓潞, 等. 硅酸盐学报, 2015, 43(2), 174. 21 Nath S, Mukherjee S, Maitra S, et al. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1953. 22 van Deventer J, Provis J, Duxson P, et al. Journal of Hazardous Materials, 2007, 139(3), 506. 23 Chang R Q, Yang J J, Wu Y L, et al. S. China Environmental Science, 2024, 44(5), 2580(in Chinese). 常睿卿, 杨俊杰, 武亚磊, 等. 中国环境科学, 2024, 44(5), 2580. 24 Li W, Yi Y. Construction and Building Materials, 2020, 238, 117713.