Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 24060144-8    https://doi.org/10.11896/cldb.24060144
  路域废弃物资源化及高值化利用 |
养护温度对赤泥基路用胶凝材料性能及微观结构的影响
韩瑞凯1,2,3, 陈宇鑫1,2,3, 张健1,2, 李召峰1,2,3,*, 王衍升1,2
1 山东大学岩土与地下工程研究院,济南 250061
2 隧道工程灾变防控与智能建养全国重点实验室,济南 250002
3 山东大学齐鲁交通学院,济南 250002
Effects of Curing Temperature on Properties and Microstructure of Red Mud-based Road Cementitious Material
HAN Ruikai1,2,3, CHEN Yuxin1,2,3, ZHANG Jian1,2, LI Zhaofeng1,2,3,*, WANG Yansheng1,2
1 Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China
2 State Key Laboratory for Tunnel Engineering, Jinan 250002, China
3 School of Qilu Transportation, Shandong University, Jinan 250002, China
下载:  全 文 ( PDF ) ( 4507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 赤泥基路用胶凝材料可代替水泥应用于道路半刚性基层建设。山东省属暖温带季风性气候,全年气温波动大。在半刚性基层施工期间,不同月份导致赤泥基路用胶凝材料养护温度不同。基于2006—2023年山东(济南)温度变化特征确定养护温度为1 ℃、4 ℃、10 ℃、16 ℃、20 ℃、25 ℃、28 ℃,通过万能试验机和1H低场核磁共振分析仪研究养护温度对赤泥基路用胶凝材料抗压强度及微观结构的影响规律,并利用X射线衍射、热重测试分析、ICP-OES揭示养护温度对赤泥基路用胶凝材料性能演化的作用机理。结果表明,养护温度升高会促进赤泥基路用胶凝材料抗压强度发展,养护温度为28 ℃时7 d抗压强度达到21.15 MPa,相较于养护温度为1 ℃时提升67.41%,且当养护温度不低于20 ℃时,在整个养护阶段强度发展率大于1 MPa/d。养护温度的提升会优化结石体孔结构分布,养护7 d后,随温度升高结石体的凝胶孔、过渡孔占比从37.82%提升到80%以上,毛细孔占比从62.18%下降到15%左右。赤泥基路用胶凝材料水化产物主要为(C,N)-A-S-H凝胶,其对强度发展起重要作用,养护温度的提升会促进赤泥Si/Al元素溶出,从而提高(C,N)-A-S-H凝胶的生成量。月均温度低于10 ℃时不宜进行道路施工,月均温度在10~20 ℃时可延长赤泥基胶凝材料养护时间促进其强度发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩瑞凯
陈宇鑫
张健
李召峰
王衍升
关键词:  赤泥基路用胶凝材料  养护温度  抗压强度  孔结构  水化产物    
Abstract: Red mud-based road cementitious material can be used instead of cement in the construction of semi-rigid road bases. Shandong Province has a warm temperate monsoon climate with significant fluctuations in temperature throughout the year. Different months result in different curing temperatures for the cementitious material. This work focused on the influencing law and underlying mechanism of variation of curing temperature on the compressive strength and microstructure of red mud-based road cementitious material. The curing temperatures applied in the experiment was changed amongst 1 ℃, 4 ℃, 10 ℃, 16 ℃, 20 ℃, 25 ℃, and 28 ℃, which was determined based on the actual temperature data in Shandong(Jinan) from 2006 to 2023. The instruments used in strength test and microstructure observation were a universal testing machine and a 1H low-field nuclear magnetic resonance analyzer, and the means utilized for revealing the underlying mechanism of curing temperature variation-induced performance evolution included X-ray diffractometry, thermogravimetry, and ICP-OES. It could be concluded that an increase in curing temperature would promote the development of compressive strength of red mud-based road cementitious material. The cementitious material cured at 28 ℃ achieved a 7-day compressive strength of 21.15 MPa, 67.41% higher than that achieved under the curing temperature of 1 ℃. When the material was cured at a temperature of ≥20 ℃, its whole-curing-stage strength development rate was higher than 1 MPa/d. Increasing the curing temperature would result in optimized pore structure distribution of the stone body. After 7 days of curing, with the increase of curing temperature, the proportions of gel pores and transition pores in the stone bodies increased from 37.82% to higher than 80% and the proportion of pores decreased from 62.18% to about 15%. The main hydration product of red mud-based road cementitious material is(C, N)-A-S-H gel, which plays an important role for strength development. Higher curing temperatures are conducive to the dissolution of Si/Al elements in red mud, thus increasing the production of (C, N)-A-S-H gel. For the application of red mud-based cementitious material to road engineering, it is recommended not to perform road construction when monthly average temperature is below 10 ℃, and to extend the curing time to accelerate strength development when monthly average temperature is within 10—20 ℃.
Key words:  red mud-based road cementitious material    curing temperature    compressive strength    pore structure    hydration product
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  U414  
基金资助: 山东省重点研发计划(重大科技创新工程)(2023ZLGX01;2021CXGC010301);山东省竞争性创新平台(2023CXPT080)
通讯作者:  *李召峰,山东大学齐鲁交通学院教授、博士研究生导师。2008年济南大学材料科学与工程学院本科毕业,2011年济南大学材料科学与工程专业硕士毕业,2016年山东大学岩土工程专业博士毕业。目前主要从事固废资源化利用、隧道与地下工程灾害防控理论与技术、环境岩土工程材料与化学等方面的研究工作。发表论文60余篇,包括Construction and Building Materials、Journal of Cleaner Production、Journal of Hazardous Materials等。lizf@sdu.edu.cn   
作者简介:  韩瑞凯,2020年7月、2023年7月分别于沈阳工业大学和太原理工大学获得工学学士学位和工学硕士学位。现为山东大学齐鲁交通学院博士研究生,在李召峰教授的指导下进行研究。目前主要研究领域为固废资源化利用。
引用本文:    
韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
HAN Ruikai, CHEN Yuxin, ZHANG Jian, LI Zhaofeng, WANG Yansheng. Effects of Curing Temperature on Properties and Microstructure of Red Mud-based Road Cementitious Material. Materials Reports, 2024, 38(22): 24060144-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24060144  或          http://www.mater-rep.com/CN/Y2024/V38/I22/24060144
1 Duan H B, Chen Y, Cai J X, et al. Acta Scientiae Circumstantiae, 2023, 43(6), 1(in Chinese).
段华波, 陈瑛, 蔡俊雄, 等. 环境科学学报, 2023, 43(6), 1.
2 Liu F Q, Qiu D F, Gu S Q, et al. Chinese Journal of Engineering, 2022, 44(4), 561(in Chinese).
刘风琴, 邱定蕃, 顾松青, 等. 工程科学学报, 2022, 44(4), 561.
3 Wang S, Jin H, Deng Y, et al. Journal of Cleaner Production, 2021, 289, 125136.
4 Mukiza E, Zhang L, Liu X, et al. Resources, Conservation and Recycling, 2019, 141, 187.
5 Ma M J, Huang Z, Wang J Y, et al. Science China Earth Sciences, 2024, 67(6), 2086(in Chinese).
马铭婧, 黄子, 王娇月, 等. 中国科学:地球科学, 2024, 54(6), 2086.
6 Xue S G, Zhu M X, Yang X W, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(10), 3421(in Chinese).
薛生国, 朱铭星, 杨兴旺, 等. 中国有色金属学报, 2023, 33(10), 3421.
7 Liu X M, Tang B W, Yin H F, et al. Chinese Journal of Engineering, 2018, 40(4), 438(in Chinese).
刘晓明, 唐彬文, 尹海峰, 等. 工程科学学报, 2018, 40(4), 438.
8 Zhang Y, Liu X, Xu Y, et al. Construction and Building Materials, 2019, 220, 364.
9 Ma L L, Zhang X, Liu F, et al. Journal of Building Materials, 2023, 26(7), 762(in Chinese).
马璐璐, 张翛, 刘芳, 等. 建筑材料学报, 2023, 26(7), 762.
10 Zhang J, Li S, Li Z. Journal of Cleaner Production, 2020, 273, 122972.
11 Xun X W, Xiao Y X, Zhang B F, et al. Multipurpose Utilization of Mineral Resources, 2023(6), 83(in Chinese).
荀小伟, 肖亚雄, 张佰发, 等. 矿产综合利用, 2023(6), 83.
12 Yin H J, Zhang Z Q, Wang W. Journal of the Hebei Academy of Sciences, 2023, 40(4), 47(in Chinese).
尹海姣, 张振卿, 王伟. 河北省科学院学报, 2023, 40(4), 47.
13 You Hao. Experimental study on durability of red mud-based cementitious material stabilized base. Master's Thesis, Shandong University, China, 2023(in Chinese).
游浩. 赤泥基胶凝材料稳定碎石耐久性试验研究. 硕士学位论文, 山东大学, 2023.
14 Li J, Xie X, Li B Q, et al. Conservation and Utilization of Mineral Resources, 2020, 40(6), 141(in Chinese).
黎洁, 谢贤, 李博琦, 等. 矿产保护与利用, 2020, 40(6), 141.
15 Zhang J M, Chu X H. Engineering Mechanics, DOI:11.2595.O3.20240426.1510.002(in Chinese).
张佳铭, 楚锡华, 余敏. 工程力学, DOI:11.2595.O3.20240426.1510.002.
16 Li W Y, Yin J H, Wang J, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 2992(in Chinese).
李文郁, 尹健昊, 王健, 等. 硅酸盐学报, 2022, 50(11), 2992.
17 Ma D D, Ma Y Q, Huang K, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(3), 572(in Chinese).
马冬冬, 马芹永, 黄坤, 等. 岩土工程学报, 2021, 43(3), 572.
18 Guo X L, Shi H S, Xia M. Journal of the Chinese Ceramic Society, 2015, 43(2), 138(in Chinese).
郭晓潞, 施惠生, 夏明. 硅酸盐学报, 2015, 43(2), 138.
19 Zhang J. Composition design, hydration mechanism and performance control of grouting material prepared by red mud and multi-source solid waste. Ph. D. Thesis, Shandong University, China, 2021(in Chinese).
张健. 赤泥协同多源固废制备注浆材料组成设计、水化机理与性能调控. 博士学位论文, 山东大学, 2021.
20 Shi H S, Hu W P, Guo X L, et al. Journal of the Chinese Ceramic Society, 2015, 43(2), 174(in Chinese).
施惠生, 胡文佩, 郭晓潞, 等. 硅酸盐学报, 2015, 43(2), 174.
21 Nath S, Mukherjee S, Maitra S, et al. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1953.
22 van Deventer J, Provis J, Duxson P, et al. Journal of Hazardous Materials, 2007, 139(3), 506.
23 Chang R Q, Yang J J, Wu Y L, et al. S. China Environmental Science, 2024, 44(5), 2580(in Chinese).
常睿卿, 杨俊杰, 武亚磊, 等. 中国环境科学, 2024, 44(5), 2580.
24 Li W, Yi Y. Construction and Building Materials, 2020, 238, 117713.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[6] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[7] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[8] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[9] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[10] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[11] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[12] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[13] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[14] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[15] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed