Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22120057-8    https://doi.org/10.11896/cldb.22120057
  无机非金属及其复合材料 |
铅冶炼渣基生态胶凝材料的研发及重金属固化
刘文欢1,2, 胡静1, 赵忠忠1, 杜任豪1, 万永峰1, 雷繁1, 李辉1,2,*
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 教育部生态水泥工程研究中心,西安 710055
Development and Heavy Metal Solidification of Lead Smelting Slag-based Ecological Cementitious Materials
LIU Wenhuan1,2, HU Jing1, ZHAO Zhongzhong1, DU Renhao1, WAN Yongfeng1, LEI Fan1, LI Hui1,2,*
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Ecological Cement Engineering Research Center of Ministry of Education, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 12270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅冶炼渣(LSS)是一种含有重金属(Cr、Ni、Cu、Zn、As和Pb)的危险废物,其不当处置会对生态系统造成不可挽回的危害。本工作采用化灰渣(LAS)、水氯镁石(BF)、矿粉(SP)及适量水泥(CM)协同激发铅冶炼渣制备生态胶凝材料。通过正交试验得到胶凝材料的最优配比,阐述了不同因素对生态胶凝材料抗压强度的影响;采用XRD、SEM、FTIR、硫酸和硝酸法等方法分析了胶凝材料水化产物的特性及重金属浸出规律。研究结果表明:当铅冶炼渣和水泥的质量比为3∶1,化灰渣、水氯镁石、矿粉的外掺量分别为铅冶炼渣和水泥质量总量的20%、10%、10%时,制备出的生态胶凝材料抗压强度最优,28 d抗压强度达到40.9 MPa,且矿粉掺量为影响其抗压强度的第一要素。微观分析表明,胶凝材料的水化产物主要为弗里德尔盐、方解石、C-S-H和C-A-S-H,它们相互连接形成致密的空间网络结构,这不但有助于提高胶凝材料的力学性能,还能实现对重金属元素的物理固封和离子交换吸附固化。胶凝材料对主要重金属的胶结固化率大于83%,重金属浸出液浓度符合生活饮用水卫生标准(GB5749-2006)的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文欢
胡静
赵忠忠
杜任豪
万永峰
雷繁
李辉
关键词:  铅冶炼渣  生态胶凝材料  抗压强度  水化产物  重金属  浸出液浓度    
Abstract: Lead smelting slag (LSS) is a hazardous waste containing heavy metals (Cr, Ni, Cu, Zn, As, and Pb), and its improper disposal can cause irreversible harm to the ecosystem. In this study, the ecological cementitious materials were prepared by using lime ash slag (LAS), bischofite (BF), slag powder (SP) and proper amount of cement (CM) co-excited LSS. The ideal cementitious material ratio was discovered through orthogonal tests, and the effects of various variables on the compressive strength of ecological cementitious materials were discussed. XRD, SEM, FTIR, and the sulfuric acid nitrate method were used to examine the properties of the cementitious materials' hydration products as well as the leaching law of heavy metals. The results show that when the mass ratio of LSS to cement is 3∶1, and the external admixture of lime ash slag, bischofite and mineral powder is 20%, 10% and 10% of the sum of the mass of LSS and cement respectively, the compressive strength of the prepared ecological cementitious material is optimal, and the 28 d compressive strength reaches 40.9 MPa, and the admixture of mineral powder is the first factor affecting its compressive strength. Microscopic analysis shows that the hydration products of the cementitious material are mainly Friedel's salt, calcite, C-S-H and C/M-A-S-H, which are interlinked to form a dense spatial network structure, which help to improve the mechanical properties of the cementitious material. The cementation solidification ratio of the cementitious material for the main heavy metals is greater than 83%, and the leaching solution concentration of heavy metals meets the requirements of the sanitary standard for domestic drinking water (GB5749-2006).
Key words:  lead smelting slag    ecological cementitious material    compressive strength    hydration product    heavy metal    leaching solution concentration
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU526  
基金资助: 国家重点研发计划(2018YFC1903804;2021YFB3802003)
通讯作者:  *李辉,教授、博士研究生导师。1994年西安建筑科技大学材料科学与工程专业本科毕业,1997年西安建筑科技大学材料学专业硕士毕业后到西安建筑科技大学工作至今,2009年西安建筑科技大学材料学专业博士毕业。主要从事固体废弃物的资源化利用及新型水泥基材料的低碳制备等方面的研究工作。近年来发表论文100余篇,包括Chemical Engineering Journal、Journal of Hazardous Materials、Journal of Cleaner Production、Environmental Chemistry Letters、Construction and Building Materials、《硅酸盐学报》《建筑材料学报》《材料导报》等,2017年曾荣获国家科技进步二等奖。   
作者简介:  刘文欢,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。2004年西安建筑科技大学材料科学与工程专业本科毕业,2007年西安建筑科技大学材料学专业硕士毕业后到西安建筑科技大学工作至今,2019年西安建筑科技大学材料学专业博士毕业。目前主要从事生态建筑材料、固体废弃物的资源化利用等方面的研究工作。近年来发表论文20余篇,包括Journal of Cleaner Production、Case Studies in Construction Materials、《建筑材料学报》《材料导报》等。
引用本文:    
刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
LIU Wenhuan, HU Jing, ZHAO Zhongzhong, DU Renhao, WAN Yongfeng, LEI Fan, LI Hui. Development and Heavy Metal Solidification of Lead Smelting Slag-based Ecological Cementitious Materials. Materials Reports, 2024, 38(6): 22120057-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120057  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22120057
1 Deng X H, Chai L Y, Yang Z H, et al. Ecology and Environmnet, 2015, 24(9), 1534(in Chinese)
邓新辉, 柴立元, 杨志辉, 等. 生态环境学报, 2015, 24(9), 1534.
2 Han J, Liu W, Qin W, et al. Minerals Engineering, 2017, 108, 1.
3 Liu X, Zhang Y, Wang N, et al. China Mining Magazine, 2015(Z1), 6(in Chinese).
刘晓, 张宇, 王楠, 等. 中国矿业, 2015(Z1), 6.
4 Li Y, Liu Z, Liu H, et al. Journal of Cleaner Production, 2017, 143, 311.
5 Mao L, Guo H, Zhang W. Construction and Building Materials, 2018, 163, 875.
6 Xiao Q, Zong Y, Lu S. Ecotoxicology and Environmental Safety, 2015, 120, 377.
7 Jiang J M. The Chinese Journal of Nonferrous Metals, 2004(S1), 52(in Chinese).
蒋继穆. 中国有色金属学报, 2004(S1), 52.
8 Pan D, Li L, Tian X, et al. Resources, Conservation and Recycling, 2019, 146, 140.
9 Zheng Y X, Liu W, Qin W Q, et al. Canadian Metallurgical Quarterly, 2015, 54(1), 92.
10 Alwaeli M. Journal of Cleaner Production, 2017, 166, 157.
11 Supit S W M, Shaikh F U A, Sarker P K. Construction and Building Materials, 2014, 51, 278.
12 Ustabaş İ, Kaya A. Construction and Building Materials, 2018, 164, 297.
13 Zhang Y M, Sun W, Yan H D. Cement and Concrete Composites, 2000, 22(6), 445.
14 Ahmedzade P, Sengoz B. Journal of Hazardous Materials, 2009, 165(1-3), 300.
15 Das B, Prakash S, Reddy P S R, et al. Resources, Conservation and Recycling, 2007, 50(1), 40.
16 Pasetto M, Baldo N. Journal of Hazardous Materials, 2010, 181(1-3), 938.
17 Yazıcı H, Yardımcı M Y, Yiiter H, et al. Cement and Concrete Compo-sites, 2010, 32(8), 639.
18 Zhang T, Yu Q, Wei J, et al. Resources, Conservation and Recycling, 2011, 56(1), 48.
19 Zhao Q L, Li H, Liu W H, et al. Journal of Functional Materials, 2021, 52(6), 6145(in Chinese).
赵启亮, 李辉, 刘文欢, 等. 功能材料, 2021, 52(6), 6145.
20 Xuan Q Q, Zhu J P, Li D X, et al. Bulletin of the Chinese Ceramic Society, 2007, 26(5), 929(in Chinese).
宣庆庆, 朱建平, 李东旭, 等. 硅酸盐通报, 2007, 26(5), 929.
21 Zhu S F. Effect of compound doping on sintering and properties of recycled cement clinker. Master's Thesis, Dalian University of Technology, China, 2016(in Chinese).
朱苏峰. 复合掺杂对再生水泥熟料烧成及性能的影响. 硕士学位论文, 大连理工大学, 2016.
22 Penpolcharoen M. Cement and Concrete Research, 2005, 35(6), 1050.
23 Zhang P, Muhammad F, Yu L, et al. Construction and Building Mate-rials, 2020, 249, 118756.
24 Bakharev T. Cement and Concrete Research, 2005, 35(6), 1224.
25 Sun Y L. Study on characteristics of cement raw materials and proportioning design in Changzhi area of Shanxi Province. Master's Thesis, Wuhan University of Technology, China, 2012(in Chinese).
孙于龙. 山西长治地区水泥原料特性及其配料设计研究. 硕士学位论文, 武汉理工大学, 2012.
26 Guo B. Fabrication of glass-ceramic and geopolymer using lead-zinc smelting slags and the immobilization mechanisms of Pb and Cd. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese).
郭斌. 铅锌冶炼渣制备微晶玻璃和地质聚合物及其铅镉固化机理. 博士学位论文, 北京科技大学, 2018.
27 Deng X. New Building Materials, 2019, 46(5), 124(in Chinese).
邓璇. 新型建筑材料, 2019, 46(5), 124.
28 Gou M F, Guan X M, Zhang H B. Journal of Building Materials, 2012, 15(6), 863(in Chinese).
勾密峰, 管学茂, 张海波. 建筑材料学报, 2012, 15(6), 863.
29 Hu C G, Wang J, Bai R Y, et al. Journal of Functional Materials, 2018, 49(6), 6206(in Chinese).
胡晨光, 王娟, 白瑞英, 等. 功能材料, 2018, 49(6), 6206.
30 Bothe Jr J V, Brown P W. Cement and Concrete Research, 2004, 34(6), 1057.
31 Zhang J, Shi C, Zhang Z. Construction and Building Materials, 2019, 226, 21.
32 Gómez-Casero M A, Pérez-Villarejo L, Sánchez-Soto P J, et al. Sustai-nable Chemistry and Pharmacy, 2022, 29, 100746.
33 Rui Y, Qian C, Zhang X, et al. Journal of Cleaner Production, 2022, 132407.
34 Zhang W, Liu X, Wang Y, et al. Journal of Hazardous Materials, 2021, 410, 124592.
35 Akbar A, Kodur V K R, Liew K M. Cement and Concrete Composites, 2021, 121, 104069.
36 Wang X, Wang Q, Zhang B, et al. Chinese Journal of Engineering, 2018, 40(10), 1177(in Chinese).
王雪, 王全, 张滨, 等. 工程科学学报, 2018, 40(10), 1177.
37 Wang Y J, Li K Q, Ni W, et al. Metal Mine, 2019(7), 194(in Chinese).
王一杰, 李克庆, 倪文, 等. 金属矿山, 2019(7), 194.
38 Parthiban K, Saravana R M K. Construction and Building Materials, 2017, 133, 65.
39 Ghirian A, Fall M. International Journal of Mining Science and Technology, 2016, 26(5), 809.
40 Wang Y, Ni W, Zhang S Q, et al. Metal Mine, 2019(4), 5(in Chinese).
王莹, 倪文, 张思奇, 等. 金属矿山, 2019(4), 5.
[1] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[2] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[5] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[6] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[7] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[8] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[9] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[10] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[11] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[12] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[13] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[14] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed